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Abstract

This dissertation advances the use of Unmanned Aerial Vehicles (UAVs) and satellite im-
agery in environmental monitoring, specifically targeting eutrophication indicators and bath-
ing water quality within aquatic and coastal ecosystems. Through a cumulative series of stud-
ies, innovative approaches integrating UAV remote sensing, deep learning techniques, and the 
quasi-analytical algorithm for precise water quality assessments and vegetation mapping were 
developed and validated. This work addresses gaps in the current capabilities for ecological 
observation and management, with advancements in both methodology and application.

The research establishes a comprehensive framework for UAV surveys, illustrating 
the effectiveness of combining diverse sensor technologies and analytical methods for de-
tailed vegetation analysis. This framework supports efforts in biodiversity conservation, 
ecosystem structure analysis, and monitoring phenological and stress-related changes in 
vegetation, guiding environmental scientists and resource managers in the adoption of 
UAV technology across various ecosystems.

In the assessment of changes in aquatic vegetation, particularly reed beds, the study 
highlights the utility of the normalized difference water index derived from Sentinel-2/
MSI data and Yen binary thresholding, validated through UAV imagery. This approach 
is found reliable in detecting mowing-induced changes in reed beds, with enhanced ac-
curacy for areas larger than 0.1 ha. 

Furthermore, the quasi-analytical algorithm for estimating Secchi depth from multispec-
tral UAV imagery was tested, identifying Hedley’s sun glint correction method as the most 
precise. The research emphasizes the algorithm’s adaptability and the impact of environ-
mental factors, such as CDOM concentration and solar zenith angle, on the accuracy of 
Secchi depth measurements, underscoring the potential of UAV technology in providing 
scalable and efficient water quality assessments across extensive areas.

Lastly, the study explores the performance of the U-Net model in segmenting beach 
wrack from UAV imagery, indicating that “RGB” data combinations yield the most ac-
curate beach wrack detections. Contrary to expectations, the addition of multispectral and 
elevation data did not significantly improve segmentation accuracy, suggesting the impor-
tance of selecting appropriate data combinations based on specific site characteristics to 
optimize model performance across varied coastal landscapes.

Collectively, these studies represent a significant advancement in the application of 
UAV and satellite technologies for environmental monitoring, offering methodologies and 
insights for the comprehensive assessment of aquatic and coastal ecosystem health. This in-
tegrated approach not only enhances current monitoring practices but also establishes a new 
standard for precision and efficiency in environmental science research.

Keywords

 Remote sensing, unmanned aerial vehicle, Secchi depth, beach wrack, helophytes.
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Reziumė 

Šioje disertacijoje aptariamas bepiločių orlaivių ir palydovinių vaizdų naudojimas 
aplinkos, tiksliau, eutrofikacijos rodiklių bei maudyklų vandens kokybės ir pakrančių 
ekosistemose stebėsenai. Atlikus tyrimus sukurti ir patvirtinti nauji metodai, apimantys 
bepiločių orlaivių nuotolinį stebėjimą, gilaus mokymosi metodus ir kvazianalitinį algo-
ritmą, skirti tiksliai vertinti vandens kokybę ir sudaryti augmenijos žemėlapius. Šiame 
darbe didelis dėmesys skiriamas spręsti dabartinių ekologinio stebėjimo ir valdymo gali-
mybių trūkumo problemas tobulinant metodiką ir pritaikymą.

Tyrimo metu sukurta išsami bepiločių orlaivių pritaikymo sistema, parodanti, kaip veiks-
mingai derinti įvairias jutiklių technologijas ir analitinius metodus siekiant atlikti išsamią au-
galijos analizę. Ši sistema padeda stebėti biologinę įvairovę, analizuoti ekosistemų struktūrą, 
fenologinius ir su stresu susijusius augalijos pokyčius, taip pat padeda aplinkos mokslininkams 
ir išteklių valdytojams pritaikyti bepiločių orlaivių technologijas įvairiose ekosistemose.

Vertinant vandens augalijos, tai yra, nendrių sąžalynų, pokyčius tyrime pabrėžiama 
normalizuoto vandens skirtumo indekso, gauto iš Sentinel-2/MSI duomenų, ir Yen dvi-
nario slenksčio, patikrinto naudojant bepiločių orlaivių vaizdus, nauda. Ištirta, kad šis 
metodas yra patikimas nustatant pokyčius nendrių sąžalynuose, kurių plotai didesni nei 
0,1 ha, atlikus šienavimą. 

Be to, atliktas Secchi gylio vertinimas naudojant daugiaspektrinius bepiločių orlaivių vaiz-
dus ir kvazianalitinį algoritmą nustatyta, kad Hedley’io saulės atspindžio korekcijos metodas 
yra tinkamiausias norint gauti tikslesnius rezultatus. Tyrime pabrėžiamas ne tik algoritmo pri-
taikymas ir aplinkos veiksnių, tokių kaip spalvotų ištirpusių organinių medžiagų koncentracija 
ir saulės zenito kampas, įtaka Secchi gylio matavimų tikslumui, bet ir bepiločių orlaivių tech-
nologijos potencialas atliekant veiksmingus vandens kokybės vertinimus didelėse teritorijose.

Tyrime nagrinėjamas U-Net modelio efektyvumas segmentuojant paplūdimio sąnašas 
iš bepiločių orlaivių vaizdų. Tyrimo metu išsiaiškinta, kad „RGB“ duomenų deriniai pa-
deda tiksliausiai aptikti paplūdimio sąnašas. Priešingai, nei tikėtasi, pridėjus daugiaspek-
trinius ir aukščio duomenis segmentavimo tikslumas nepadidėjo, todėl norint optimizuoti 
modelio veikimą įvairiose pakrantėse, svarbu parinkti tinkamus duomenų derinius, atsi-
žvelgiant į konkrečias vietovės charakteristikas.

Apibendrinant šiuos tyrimus galima teigti, kad jie daro reikšmingą pažangą taikant 
bepiločių orlaivių ir palydovų technologijas aplinkos stebėsenai. Tyrimuose pateiktos me-
todikos ir įžvalgos, skirtos išsamiai vertinti vandens ir pakrančių ekosistemų būklę. Šie 
integruoti metodai ne tik pagerina dabartinę stebėsenos praktiką, bet ir nustato naujus 
tikslumo ir efektyvumo standartus aplinkos mokslų tyrimuose.

Reikšmingi žodžiai 

Nuotolinis stebėjimas, bepilotis orlaivis, Secchi gylis, paplūdimio sąnašos, helofitai.
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Water bodies including the majority of the lakes, the Baltic Sea and its coastal 
region are greatly impacted by eutrophication and under continuous observation to 
assess water quality and ecosystem health (Murray et al., 2019), supported by in-
ternational frameworks such as the Water Framework Directive (WFD), the Marine 
Strategy Framework Directive (MSFD), Habitat Directive and the Helsinki Conven-
tion. These directives focus on sustainable water use, prevention of degradation, and 
marine ecosystem conservation (Chemin et al., 2004; Dassenakis et al., 2011). In the 
assessment of Baltic marine environmental health based on these international poli-
cies, two critical parameters are emphasized for monitoring and evaluation of eutro-
phication: transparency of water column and distribution of macrophytes. Another 
important aspect of monitoring the Baltic Sea’s coastal environment, in line with the 
Bathing Water Directive and Lithuanian hygiene standards, involves the regular as-
sessment and classification of bathing water quality and beach wrack (BW), which 
plays a role in understanding the ecological status and human health implications of 
coastal waters (European Parliament, 2006). 

Water transparency is primarily measured using Secchi depth (SD), which is labor-
intensive and subject to observer bias, as noted by Jiang (2012) and Yu et al. (2014). 
This method provides only point-level measurements, which may not accurately rep-
resent larger areas (Pham et al., 2020; Stock, 2015). The WFD mandates monitoring 

INTRODUCTION

1
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of all inland waters larger than 0.5 km², a challenging goal that requires innovative 
monitoring methods (Dworak et al., 2005). For example, in Estonia, approximately 
80 waterbodies exceeding 0.5 km² of area are subject to monitoring, yet in 2014, only 
about 40% were annually monitored (Alikas et al., 2015). In Sweden, the monitoring 
task is even harder with over 7200 lakes, where only lakes larger than 1 km² were 
included in the latest WFD status classification due to practical and financial con-
straints. This limitation was criticized, and plans are in place to include all lakes in fu-
ture reports. Considering the vast number of lakes, this imposes a significant financial 
challenge when relying solely on traditional monitoring methods. 

In Europe, the sampling procedures for assessing macrophyte abundance under 
the WFD are diverse but most countries utilize transect-based sampling, a method 
where point (from squares or sections) observations are made along set lines across 
a water body, covering different depth zones (Poikane et al., 2018). The coverage 
of macrophytes is estimated using a 4–9 point scale or percentage coverage scale 
and each country has developed specific reference values to assess ecological status. 
Traditional in situ measurements are mainly destructive and are constrained by their 
labor-intensive nature and limited accessibility, especially in aquatic environments. 
The monitoring frequency of macrophyte populations in European lakes varies from 
annual (Søndergaard et al., 2013) to once in 6 years (the reporting cycle under the 
WFD), indicating the lack of an annual time-series of monitoring in most water bod-
ies during six-year cycles. Under the Habitat Directive in the Natura 2000 areas, the 
monitoring of macrophyte habitats (characterized by species such as Phragmites, Zos-
tera, Potamogeton, and Chara) in coastal lagoons, rivers and lakes is important for the 
assessment of their conservation status (European Commission, 2013).

While the monitoring approach effectively captures data on various macrophyte 
species, BW, an important indicator in coastal ecosystems, remains less emphasized 
in current monitoring practices. Integrating BW monitoring within the existing frame-
work could provide a more holistic understanding of coastal ecosystem health under 
the Bathing Water Directive (Directive 2006/7/EC). Furthermore, BW often harbors 
fecal indicator bacteria and potentially pathogenic microorganisms, including Vibrio 
species, which pose health risks in coastal environments and necessitate consideration 
in monitoring protocols (Kalvaitienė et al., 2023, and references therein). Coastal 
monitoring, which incorporates BW as a key component, faces challenges in its de-
tection and quantification due to its variable distribution and the limitations of tradi-
tional mapping methods. BW monitoring methods, often labor-intensive and reliant 
on manual field surveys, are prone to human error. This indicated a need for improved 
methodologies in comprehensive coastal health assessment, as exemplified by some 
countries integrating BW monitoring within their coastal management frameworks, 
adapting to their unique conditions (Schlacher et al., 2008; Woelfel et al., 2021; Bus-
sotti et al., 2022).
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In Lithuania, water transparency and macrophyte monitoring are integral to assess-
ing lake and coastal water ecological conditions, which methods are approved by the 
Lithuanian Ministry of Environment (Lithuanian Republic Ministry of Environment, 
2013) and currently cover around 80 lakes every 6 years in Lithuania, as well all fresh-
water habitats larger than 50 ha, as required by WFD (Broeck et al., 2015). Water trans-
parency is categorized into five classes, from ‘very good’ to ‘very bad’, with specific 
thresholds of good ecological status: in lakes, ‘good’ exceeds 1.3 m, while in coastal 
waters, it exceeds 5.0 m. In inland and transitional waters, the macrophyte assessment 
method employs transect-based sampling, using the Braun-Blanquet or percentage 
scale to evaluate the coverage of macrophyte species primarily during July and August. 
The same approach is used for macrophyte habitat monitoring under the Habitat Direc-
tive. For instance, in the Curonian Lagoon, the area of the red-listed species Nymphoi-
des peltata is crucial for its habitat assessment, especially using orthophotos (Bučas 
et al., 2023). This approach could also be suitable for monitoring large-scale habitat 
changes (Sinkevičienė et al., 2017) that are challenging to evaluate through traditional 
methods (transect surveys). Furthermore, monitoring of BW is often inconsistently 
managed by local beach authorities by visual evaluation on whether the BW is spread-
ing (Republic of Lithuania, Ministry of Environment, 2007), leading to potentially 
unaddressed environmental issues, for example, large accumulations of BW.

Techniques utilizing platforms such as satellites provide valuable insights into the 
spatial and temporal variations in water quality (Chen et al., 2007; Strong and Elliott, 
2017). Remote sensing data, varying in spatial and spectral resolution, include Earth 
observation data from satellites such as the Sentinel-2 multispectral instrument (S2/
MSI). The S2/MSI satellite is notable for its high spatial resolution data with a ground 
sampling distance of up to 10 m and frequent revisit times (around 1 image per 3 
days), aiding in a range of environmental monitoring tasks (Drusch et al., 2012). Ad-
ditionally, S2/MSI offers a range of spectral bands (12 total), particularly in the visible 
and near-infrared portions of the spectrum, that are critical for detecting water qual-
ity constituents. Studies utilizing S2/MSI imagery have contributed significantly to 
detailed ecological assessments (Ghirardi et al., 2022). By unifying satellite data, re-
searchers can obtain extensive aquatic environmental information, offering a holistic 
overview of environmental conditions. Satellites reveal details on aquatic plant distri-
bution, water temperature, turbidity, and other pivotal indicators of aquatic ecosystem 
health (McCullough et al., 2012). Remote sensing, enhanced with machine learning 
models, has advanced environmental monitoring by offering broader coverage and 
cost-effectiveness. Recent advancements in aquatic monitoring and management are 
predominantly driven by the integration of remote sensing and machine learning, yet 
these innovations also come with their own set of limitations. Integrating satellite 
data, especially with advanced techniques like deep learning models, poses challenges 
in data acquisition and processing. The performance of machine learning models can 
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vary widely, requiring accurate optimization and standardization for broad applica-
bility and reliability. Moreover, the process of integrating satellite data to monitor 
coastal environments or characterize vegetation complexity underscores the need for 
sophisticated computational methods that can manage large datasets without com-
promising accuracy. Additionally, factors such as meteorological conditions (strong 
winds, rain, snow, etc.) and solar positioning can affect data accuracy, limiting the 
methods’ applicability (Dugdale et al., 2019). The financial implications of acquiring 
and maintaining advanced satellite technologies can also be prohibitive, especially in 
resource-limited regions (Sibanda et al., 2021).

Further advancements in remote sensing have also led to the development of 
methods for Unmanned Aerial Vehicle (UAV) use in similar research topics, such 
as those equipped with the multispectral camera (e.g., Micasense Rededge), offer-
ing even higher spatial resolution imagery (ground sampling distance of 2 cm per 
pixel) than Earth observation satellites for detailed environmental studies (Deng et 
al., 2018; Knoth et al., 2013), and capacity to capture spectral details in visible, near-
infrared and red-edge bands for precise vegetation and water quality analysis. By 
unifying drone and satellite data, researchers can obtain both very high-resolution 
and extensive aquatic environmental information, thus yielding a holistic overview 
of environmental conditions. These methodologies allow for the monitoring of large 
areas in a timely and cost-efficient manner, acquiring high-resolution data on diverse 
parameters (Hilton et al., 1984). UAVs deliver precise imagery and insights into wa-
ter quality (Lally et al., 2019) and are crucial for analyzing aquatic zones, including 
lakes, rivers, wetlands, and coastal regions (Dronova et al., 2021). Equipped with 
multispectral cameras, drones can capture detailed images of underwater habitats, 
aiding in the identification and mapping of macrophytes and other essential aquatic 
terrains (zhang et al., 2016). They also assess water quality parameters such as clarity 
and monitoring issues like eutrophication. Recent studies employing UAVs have en-
hanced our understanding of vegetation complexity in ecosystems worldwide (Alva-
rez-Vanhard et al., 2020; Gonzalez et al., 2016; Jiménez López and Mulero-Pázmány, 
2019). Improved water quality monitoring has also advanced notably, with sensor 
and communication technology enabling rapid detection of hydrological changes and 
early warning systems for events such as harmful algal blooms (Glasgow et al., 2004). 
Integrating UAV data can improve aquatic environmental understanding and refine 
conservation and management tactics Paneque-Gálvez et al., 2014; Ruwaimana et al., 
2018). However, the accuracy and efficiency of UAV-derived measurements can also 
be compromised by environmental variables like cloud cover, water turbidity, sun 
angle, and the dynamic nature of the subjects under study. The complexity of ecosys-
tems adds difficulty in data classification and feature delineation, such as reed beds 
(Kislik et al., 2018). UAV-based multispectral sensors provide spatial data across dif-
ferent environments, but capturing high-quality data in environments like underwater 
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habitats remains challenging (zhang et al., 2016). Despite advancements, comprehen-
sive integration and standardization of UAV technologies for aquatic environmental 
monitoring are still developing. 

Remote sensing innovations are vital for the conservation and sustainable manage-
ment of water bodies and their vast resources, allowing for the development of efficient 
monitoring workflows that are transferable across different coastal environments (To-
masello et al., 2022). These methods offer efficient, large-scale monitoring capabilities, 
especially for submerged aquatic vegetation management, but they require specific cor-
rections and analysis methods to be effective (Rowan & Kalacska, 2023). Deep learn-
ing applications in remote sensing show promise in detecting water pollution outbreaks, 
highlighting a significant step forward in environmental monitoring (Kwon et al., 2018; 
Sagan et al., 2020). The integration of cross-mission data merging and deep learning in 
automating continuous water quality monitoring represents a significant improvement in 
management strategies, especially in sensitive environments (Chang et al., 2017). How-
ever, challenges remain in this field, where addressing technical limitations and refining 
these tools is essential for optimizing their application in environmental conservation.

1.1. Aim and objectives 

The overall aim of this doctoral dissertation is to evaluate and enhance the capa-
bilities of UAVs and satellites in assessing eutrophication and bathing water quality 
within aquatic and coastal ecosystems. 

Four main objectives of this thesis are framed around the following research aims, 
which address critical gaps in current environmental monitoring practices:

1. Based on a comprehensive synthesis of UAV applications in vegetation studies 
to identify common vegetation parameters that shape workflows guiding the 
design of UAV surveys, to establish an integrated framework for mapping es-
sential aspects of biodiversity and ecosystem functioning. (Paper I)

2. To investigate the applicability of satellite data in detecting mowing-induced 
changes in aquatic vegetation, such as reed beds, and assess how these de-
tections can contribute to the development of strategic management interven-
tions. (Paper II)

3. To evaluate the effectiveness of UAVs equipped with multispectral cameras in 
estimating Secchi depth using the Quasi-Analytical Algorithm in inland water 
bodies. (Paper III)

4. To test whether the use of UAVs with multispectral camera for U-Net models 
can be applied in coastal monitoring, especially for beach wrack detection and 
monitoring across a range of beach types, each exhibiting unique geomorpho-
logical features. (Paper IV)
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1.2. The novelty of the study

The proposed study addresses the current gap in understanding the use of remote 
sensing data, specifically from UAVs and Earth observation satellites, for monitoring 
aquatic environments in Lithuania. However, the suggested method workflows could 
be applied in other locations, assuming similar environmental conditions. The novelty 
of this dissertation lies in its approach to utilizing the capabilities of UAVs for eco-
logical and environmental monitoring leveraging techniques like deep learning and 
automated workflows. An important aspect of the study’s novelty is the extensive vol-
ume of image data collected from diverse geographical locations, utilizing advanced 
multispectral camera technology together with a conventional RGB camera, which 
significantly enhances the depth and accuracy of analysis. While individual studies 
have explored UAV applications in environmental science, this work provides as-
sessment across diverse domains — ranging from water quality evaluation to vegeta-
tion change and complexity mapping. By evaluating the QAA in the context of Sec-
chi depth determination and integrating U-Net convolutional neural network models 
for BW segmentation, this research introduces a simpler, cost-effective methodology 
previously untested in these domains, significantly reducing the time and resources 
required for traditional SD and BW in situ measurements. Moreover, the unique focus 
on mowing-induced changes in reed bed areas, especially for sizable patches, fills 
a significant knowledge gap in management using remote sensing. The last compo-
nent is the synthesis of UAV-based ecosystem complexity studies, aiming to create 
a universally applicable framework for vegetation analysis. This study consolidates 
multiple research approaches and sets forth best practices and workflows, aiming to 
standardize and optimize future UAV-driven ecological studies.

1.3. Scientific and applied significance of the results

1.3.1. Scientific significance

The research presented in this dissertation exemplifies the intricacies of aquatic 
ecosystems within the Baltic region, enhancing our understanding of surface water 
quality through the innovative use of UAVs and satellite remote sensing technolo-
gies. By integrating these technologies, this study offers novel insights into the spa-
tial and temporal dynamics of water transparency and aquatic vegetation changes. It 
underlines the critical role of detailed, high-resolution data in capturing the subtle 
complexities of small and shallow water bodies, areas that have previously been chal-
lenging to monitor accurately. 
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The study expands the scientific discourse on remote sensing methodologies by 
validating the effectiveness of the Quasi-analytical algorithm (QAA, Lee et al., 2015) 
specifically tailored for UAV applications. This advancement underscores the algo-
rithm’s enhanced precision in assessing water transparency, a vital parameter in water 
quality studies.

In addressing the ecological concerns associated with aquatic vegetation, this study 
provides a deeper understanding of reed beds growth patterns and distribution shifts, 
particularly in response to anthropogenic interventions such as mowing. The scien-
tific contribution of this work also lies in its examination of automatic thresholding 
algorithms, which have shown to be effective in delineating between different types of 
aquatic and coastal vegetation. While beach wrack distribution is not a direct indicator 
of water quality, the research establishes its significance in coastal ecosystem health 
assessments, offering a methodological improvement in its monitoring.

Moreover, the study furthers scientific knowledge by demonstrating the capabil-
ity of the U-Net convolutional neural network to enhance the classification accuracy 
of drone imagery. This finding is a testament to the growing synergy between AI and 
environmental science, creating the way for more sophisticated analytical tools in 
remote sensing research.

1.3.2. Applied significance

The developed methods for water quality assessment can be used by environmen-
tal managers and policymakers to monitor and make informed decision, leading to 
more effective and sustainable management strategies. The findings related to the 
regrowth of common reed areas post-mowing can inform management interventions 
for controlling this vegetation. Additionally, the demonstrated success of UAV multi-
spectral imaging in measuring water transparency offers a cost-effective and efficient 
method for large-scale water quality monitoring, which can be particularly useful in 
regions where in situ measurements are challenging or resource-intensive. Lastly, the 
ability to map and quantify beach wrack using drone imagery and machine learning 
can aid in beach management, potentially informing clean-up operations, microplas-
tic pollution mitigation, and even resource recovery for uses such as fertilization. All 
these applications have the potential to contribute to the conservation and improved 
health of our aquatic ecosystems.
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1.4. Scientific approval

1. COST HARMONIOUS (poster, 2019 11 06 Portugal) – Mapping of aquatic 
vegetation habitats and water bird distribution using unmanned aerial vehicle 

2. EOMORES workshop (poster, 2020 01 23 Netherlands) – Mapping of aquatic 
vegetation habitat distribution using remote sensing

3. Jūros ir krantų tyrimai (poster, 2020 Lithuania) – Makrofitų išteklių pokyčių 
vertinimas pasitelkiant palydovinius duomenis

4. Marine Research Institute seminar (oral, 2021 04 08 Lithuania). Remote sens-
ing methods for aquatic vegetation monitoring in Lake Plateliai and other 
ecological monitoring using drones

5. Jūros ir krantų tyrimai (poster, 2021 10 21 Lithuania) – Paplūdimių dumblių 
sankaupų erdvinio paplitimo tyrimai panaudojant bepilotes skraidykles

6. MRI Thursday seminar (oral, 2022 04 28 Lithuania). Spatial distribution and 
coverage of beach wrack using drone imagery

7. Living Planet Symposium: (poster, 2022 05 23-27, Germany, Bonn) Beach 
and shallow sea wrack spatial distribution detection using unmanned aerial 
vehicles 

8. Fourth ICES PICES Early Career Scientist Conference – (poster, 2022 07 17 – 
21, Canada, Newfoundland) Beach and shallow sea wrack spatial distribution 
detection using unmanned aerial vehicles 

9. Jūros ir krantų tyrimai (oral, 2023 04 19 – 04 21 Lithuania) – Drono vaizdai 
išmetamų pakrantėje dumblių sankaupų įvertinimui
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2.1. Study sites

The research was carried out across three distinct aquatic environments in Lithu-
ania: Plateliai Lake, four coastal beaches, and 42 Lithuanian lakes and reservoirs. 
Each site was selected for its specific features, contributing to the overall study objec-
tives (Figure 1).

Plateliai Lake (Paper II) was chosen as the test site for detecting macrophytes us-
ing Sentinel-2 satellite imagery, with UAV images serving as validation. The lake was 
chosen for its well-studied macrophyte community and its management strategy of 
lake water quality maintenance, which provided a useful test environment for evalu-
ating the accuracy of the macrophyte detection method. Covering 1,200 ha, Plateliai 
Lake has an average depth of 10.5 m and reaches a maximum depth of 49.1 m, is clas-
sified as an oligo-mesotrophic lake (with 2.4 ± 1.8 µg chlorophyll-a l-1 in the period 
2001–2010) that is located in the western part of Lithuania and is part of the Žemaitija 
National Park. The common reed beds are unevenly distributed along the coastline 
of the lake, with a higher concentration found in the eastern part (Sinkevičienė et al., 
2005). From 2017 to 2019, the Žemaitija National Park directory performed mowing 
operations in seven areas within the littoral zone of the lake. For this study, eight areas 
of interest (AOIs) were selected, seven aligning with mowing areas and one serving as 
a reference point where mowing was not performed (Figure 1). The first seven AOIs 

MATERIALS AND METHODS
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were numbered based on the technical specification document of the reed mowing 
(Technical specification of Plateliai Lake reed mowing, 2017). These AOIs, covering 
a combined area of 18 ha (1.5% of the total lake area), were primarily inhabited by 
common reeds with small stands of lakeshore bulrushes (Schoenoplectus lacustris) in 
some areas.

A set of lakes and reservoirs in Lithuania (Paper III) were selected to measure SD 
using a UAV multispectral camera. The water bodies were chosen for their diversity in 
size, surrounding vegetation and proportion of optically active in-water components – 
turbidity, chlorophyll-a (Chl-a) and colored dissolved organic matter (CDOM), which 
provided a representative amount of the diverse aquatic environments in Lithuania. 

Coastal Beaches (Paper IV) with the set of four areas of interest (AOIs) along the 
continental Lithuanian coastline selected for monitoring BW from April 2021 to May 
2022. These AOIs included Melnragė, Karklė, Palanga, and Šventoji Beaches. Each 

Figure 1. Locations of study sites in Lithuania. Plateliai Lake, utilized for macrophyte 
detection and mowing zone evaluation; four coastal beaches — Melnragė, Karklė, Palanga, 

and Šventoji—for beach wrack studies; and the 42 lakes and reservoirs chosen for SD 
assessment using UAV multispectral imaging.
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site presents distinct features such as proximity to urban areas, shipping and tourism 
activities, and the presence of coastal features such as dunes. For example, Melnragė 
is located near The Port of Klaipėda, which is heavily used for shipping and is also 
close to Klaipėda – the largest city in the western Lithuanian region, with a connection 
to the Curonian Lagoon via a port. Karklė beach is characterized by the presence of 
boulders, which support the growth of algae, and is located in a more rural area, sur-
rounded by forest (Jarmalavičius et al., 2011). Palanga Beach is a popular tourist des-
tination during the summer season and is cleaned regularly by the municipality, which 
removes larger trash from the sand and BW. Šventoji is a small fishery port, with the 
widest sandy beach of all AOIs, measuring around 107 m, as well as an outflow of 
River Šventoji. Dunes are present in all of the studied AOIs and the AOI of Karklė 
also has clay cliffs. The total length of beach in the study area was approximately 39 
km and the entire coast is exposed to the Baltic Sea. 

The BW along the Lithuanian Baltic coast is primarily composed of perennial 
red algae, predominantly Furcellaria lumbricalis and Vertebrata fucoides, which ac-
count for 85% of the overall BW biomass. In comparison, filamentous green algae, 
Cladophora glomerata and C. rupestris, and brown algae, primarily Fucus vesiculo-
sus and Sphacelaria arctica, make up 14% and 1% of the BW biomass, respectively 
(Kalvaitienė et al., 2023). Red algae species are widespread on rocky substrates at 
depths ranging from 3 to 16 m. In contrast, filamentous green algae are densely popu-
lated on stones in more shallow (< 6 m) waters. Sphacelaria arctica, a filamentous 
brown algae species, typically occupies harder substrates at greater depths (> 9 m). 
Overgrowths of the genera Pylaiella and Ectocarpus are observed on both natural 
and artificial substrates, such as boulders and piers, within a depth range of 1 to 5 m 
(Bučas et al., 2009). Notably, Fucus vesiculosus populations have not been detected 
on the hard-bottom environments of the south-eastern Baltic Sea coast, implying po-
tential transportation from other, more sheltered coastal regions.

2.2. Data collection

A comprehensive remote sensing approach was employed through the integration 
of in situ measurements, UAV imagery, and satellite data, where in situ measurements 
provided ground truth validation, UAVs captured high-resolution spatial details, and 
satellites offered extensive temporal coverage. Some data acquisition or processing 
steps are similar among studies II through IV (Figure 2). More details are provided in 
specific sections within each published paper, which extend beyond data acquisition, 
data processing and analysis. This approach not only enhanced the spatial and tempo-
ral resolution of the environmental assessments but also increased the validity of the 
findings, as detailed in the individual papers.
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2.2.1. Unmanned aerial vehicles data acquisition techniques

The methodological framework of the first study (Paper I) is based on a group 
of scientists, created during the European Cooperation in Science and Technology 
(COST) Action, Harmonization of UAS techniques for agricultural and natural eco-
systems monitoring (HARMONIOUS) project (Action CA16219, 2017). Within the 
Vegetation Monitoring working group meeting, experts based on their best practices 
identified common parameters that were tested in UAV vegetation studies. The ob-
jective was to summarize insights on how UAVs have been previously deployed in 
ecological research, focusing on the heterogeneity of vegetation, survey methodolo-
gies, and data processing techniques (Figure 3). To support the methodology further, 
a review of existing literature was undertaken, utilizing the Scopus database as the 
primary resource. This review process was structured to cover studies applicable to 
each of the identified parameters.

In the rest of the three studies (II–IV), UAVs paired with high-resolution cameras 
were employed to capture images, which served to validate mapped data and enhance 
the understanding of the target environments. The primary objective of the image 
analysis, while exhibiting underlying similarities in the methodological application 
of UAVs across the studies, is distinguished by the selection of different UAV and 

Figure 2.  Simplified workflow of studies (for Papers II-IV).
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camera models, flight protocols — including the altitude of flights, frequency of im-
age captures, and image overlap, adhering to optimal weather conditions: wind gusts 
below 10 m/s, absence of precipitation, and temperatures exceeding 0°C, as colder 
temperatures might reduce battery longevity and thus flight duration. Different stud-
ies also employed varied software tools, however, all mosaicking software in the back 
end used the structure from motion algorithm, resulting in the production of orthopho-
tos. Flight planning was done using the PIX4Dcapture app, maintaining a consistent 
flight altitude of 40–60 m with a 75% overlap between images. An additional transect 
was integrated into the flight plan, aiming to decrease distortions in the core area of 
the mosaics. 

In the reed bed changes study (Paper II), UAV images were captured using a DJI 
Phantom 4 multi-rotor UAV with a 20-megapixel RGB camera (Table 1). The flight 
height was set at 40 m, with a 75% overlap between images to generate detailed ortho-
photos (ground sampling distance 2 cm). The images were used to validate reed beds 
mapped from Sentinel-2/MSI data (see section 2.2.2.). Ground control points (GCPs) 
were used to georeference orthophotos, thereby achieving more accurate results. 

For the SD (Paper III) analysis, a DJI Inspire 2 multirotor UAV with a RedEdge-
MX camera was used, which had five spectral bands: Blue (475 nm ± 16 nm), Green 
(560 nm ± 13 nm), Red (668 nm ± 8 nm), Red edge (717 nm ± 6 nm), and Near-
infrared (842 nm ± 28 nm). Each band has a resolution of 1.2 megapixels and offers a 
47.2° horizontal and 34.4° vertical field of view. The UAV images were acquired at an 
altitude of 60 m using a function that captured images every 3 seconds, allowing for a 
ground sampling distance of around 3 cm. 

Figure 3. Graphical summary of reviewed parameters and processes (reprinted from Paper I).
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Table 1. Drone images for validation with corresponding reed-cutting areas  
derived from S2 images.

Sentinel-2/MSI UAV dates and AOI Mowing status
2016 May 10 - Land masking
2016 Jun 19 - Before mowing
2016 Aug 28 - Before mowing
2017 May 5 - Land masking
2017 Jul 14 - Before mowing

2017 Aug 31 - After mowing
2018 May 10 - Land masking
2018 Jul 17 2018 Jul 10 (AOI:5, reference); 18(AOI:4,5); 19(AOI:1, 10, 11) Before mowing
2018 Sep 20 - After mowing
2019 Apr 23 - Land masking
2019 Jul 12 - Before mowing

2019 Aug 26  2019 Aug 12(AOI: 10, 11, reference); 20(AOI:5, 9) After mowing
2020 Apr 20 - Land masking
2020 Jul 18 - No mowing
2020 Sep 1 - No mowing
2020 Sep 6 - No mowing

For the BW study (Paper IV), the flights were planned roughly every 10 days at 
AOIs with BW presence. If conditions were unsuitable, flights were rescheduled to 
the closest favorable day, preferably soon after sunrise (between 6 am and 10 am local 
time) to mitigate sunlight reflections on water and to ensure minimal human pres-
ence on the beaches, aligning with European regulations (EU 2019/947 and 2019/945, 
2022) which restrict flight over crowds. The multispectral camera yielded images 
with a ground sampling distance of roughly 3.5 cm/pixel. In contrast, RGB camera 
images had a resolution of about 1.5 cm/pixel. Mosaics varied from 0.20 to 1.7 km of 
beach length, depending on the BW size. For U-Net modeling, 29 multispectral im-
ages were assembled into mosaics and subsequently segmented into 163 tiles, each 
measuring 5000 x 5000 pixels. Of 75 total flight missions, the multispectral count 
included 7 in Melnragė, 4 in Karklė, 3 in Palanga, and 15 in Šventoji, while the re-
mainder employed RGB imaging used solely for digital elevation models (see 2.2.3).

Both zenmuse X5S and RedEdge-MX camera selections were due to their ability 
to generate image mosaics and digital surface models as well as digital terrain models, 
crucial for calculating BW heights. The produced mosaics were georeferenced to a 
Lithuanian orthophoto map of 0.5 m spatial precision using QGIS (QGIS.org, 2022). 
During each georeferencing instance, a minimum of three ground control points, repre-
senting static objects, ideally located at the UAV orthophoto’s corners, were identified.
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2.2.2. Remote sensing and Earth observation data

Satellite data used in this study were sourced from the Sentinel-2A and Sentinel-2B 
satellites (S2/MSI). The S2/MSI delivers data with varying spatial resolutions across 
its 12 bands at 10 m (red 664 nm, green 559 nm, blue 492 nm, NIR 832 nm), 20 m 
(vegetation red edge 704, 740, 782 nm, narrow NIR 864 nm, SWIR 1613, 2202 nm) 
and 60 m (coastal aerosol 442 nm, water vapor 945 nm, cirrus 1373 nm) depending on 
bands used. In the spectral dimension, it spans from 440 nm to 2202 nm. For the area 
under observation, the Plateliai Lake, the S2/MSI satellites provide a revisit time of 
every three days, ensuring frequent data acquisition for robust analysis.

In total, sixteen S2/MSI images were utilized in the reed bed mowing evaluation 
study. These images were strategically chosen to align with the commencement of the 
reed mowing period, specifically, between the 20th of July and the 10th of September. 

An essential aspect of the data selection process was to ensure minimal cloud cov-
erage, as clouds and their shadows can significantly impact the data quality. For most 
areas of interest (AOIs), these criteria were satisfactorily met, except for two cases. In 
AOI 5, the image corresponding to the mowing date (6th September 2020) contained 
cloud shadows, prompting the use of an earlier image from the 1st of September 2020. 
Similarly, the image from the 19th of June 2016 had a cloud shadow obscuring half 
of AOI 13. However, since no cloud-free images were available during the relevant 
period, the image was used, excluding AOI 13 from the analysis. Such considerations 
underscore the practical challenges in satellite remote sensing and the adaptive strate-
gies required to maintain data quality (Turner et al., 2015).

A significant portion of the Sentinel-2/MSI products used in the study had already 
undergone processing to Level-2A data. This level of processing includes atmospher-
ic correction by the Sen2Cor processor, which is crucial to derive accurate surface 
reflectance values. The Sen2Cor processor transforms top-of-atmosphere Level-1C 
images into atmospherically corrected Level-2A surface reflectance images, along 
with maps and quality indicators. Processed data is freely available for download on 
the Copernicus Open Access Hub, a dedicated platform that hosts Earth observation 
datasets. However, for images before September 2017, Level-2A data were not read-
ily available. To fill this gap, the Sen2Cor processor was applied to Level-1C images 
using SNAP software (version 8), ensuring a consistent level of data processing across 
all used datasets.

2.2.3. Field sampling

Field measures for the SD study (Paper III) were concurrently executed to the UAV 
imaging. Measurements of SD were taken using a 20 cm white Secchi disk, a globally 
recognized tool for determining water transparency in diverse aquatic environments 
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(Lin et al., 2022; Stephens et al., 2015). This study was executed from May to Sep-
tember from 2021 to 2022.

Alongside SD, water samples were collected for further analysis of Coloured Dis-
solved Organic Matter (CDOM), Chlorophyll-a (Chl-a), and turbidity. A dataset con-
sisting of 43 paired in situ SD measurements and UAV images was assembled for 
subsequent analysis.

The process of quantifying Chl-a concentration involved filtering water samples 
through glass fiber GF/F filters with a nominal pore size of 0.7 μm, followed by ex-
traction into 90% acetone. The concentration of photosynthetic pigments was then de-
termined spectrophotometrically, and estimated via the trichromatic method (Jeffrey 
and Humphrey, 1975, Parsons et al., 1984). CDOM concentration was measured in 
water samples filtered through 0.22 μm membrane filters prior to spectrophotometric 
analysis. The CDOM absorption coefficient at 440 nm (g440) was determined follow-
ing the methodology detailed by Kirk (2010). A SHIMADzU UV-2600 spectropho-
tometer was used to analyze both Chl-a and CDOM.

Turbidity, an important factor influencing water clarity, was quantified using a 
turbidity meter (Eutech Instruments TN-100, Landsmeer, The Netherlands), which 
provided readings in nephelometric turbidity units. The device is equipped with a 
near-infrared light-emitting diode at 850 nm and measures light scatter at a 90° angle, 
in compliance with the International Standard Organisation (ISO) 7027. Using this 
integrated approach to field sampling, which combines both optical and chemical as-
sessment, was crucial for validating the data of the studied water bodies.

In the field, remote sensing reflectance (Rrs) was obtained within the spectral 
range of 400–800 nm. This was achieved by conducting simultaneous measurements 
of downwelling irradiance, upwelling radiance, and downwelling radiance, employ-
ing the WISP-3 spectroradiometer (Hommersom et al., 2012). The relationship be-
tween these parameters is given by equation 1.

 𝑅𝑅𝑟𝑟𝑟𝑟 =
𝐿𝐿𝑢𝑢 − 𝜌𝜌𝐿𝐿𝑑𝑑

𝐸𝐸𝑑𝑑
 .       (eq. 1)

In this equation, Lu denotes the upwelling radiance, Ld signifies the downwelling 
radiance, and Ed represents the downwelling irradiance. The term ρ stands for a water 
surface reflectance factor, set to a value of 0.028 in this study (Hommersom et al., 
2012).

After these measurements, they were utilized to validate the corresponding wave-
lengths derived from UAV observations of water surface reflectance (see statistics 
2.3.4). Given that the WISP-3 spectroradiometer is a hyper-spectrometer, it captures 
data across a broad range of narrowly spaced wavelengths. However, only the central 
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wavelengths corresponding to the Rededge MX camera were considered in this study, 
excluding the NIR band. The wavelengths used were 475 nm, 560 nm, 668 nm, and 
717 nm.

In addition to the aforementioned field measurements, in situ sampling was also 
conducted for the assessment of BW heights (Paper IV). This process involved a se-
ries of 16 field missions, carried out concurrently with UAV flights at AOIs. During 
these missions, the height of BW deposits was measured using a plastic ruler, ensuring 
minimal disturbance to the underlying sand layer. Measurements were taken at ap-
proximately every 10 m along a transect line that spanned the entire width of the BW 
deposit. This transect line (Figure 4) included three key sampling points: the start of 
the BW deposit (closest to the water), a middle point and the end of the BW deposit 
(furthest from the water). 

Figure 4. Measured points along selected beach wrack (BW) transect. Close to water, in the 
middle, at the edge of the BW and at one point in the sand for reference.

A total of 177 measurement points were recorded across the four study sites, both 
within the areas of BW deposits and in reference areas without BW, where only coor-
dinates were measured and height considered as 0 cm. These in situ height measure-
ments were essential for validating the UAV-derived estimates of BW heights. 

2.3. Image processing

The reed beds (Paper II) were manually delineated from the UAV orthophotos and 
reed density in percentages was evaluated visually using 10 m² polygons, matching 
the resampled S2/MSI pixel size. The shoreline boundary was defined using a lake 
polygon map obtained from the Lithuanian geoportal database, with islands such as 
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Pilies, Veršio, Briedsalė, Pliksalė, and Gaidsalė removed. Moreover, a 10 m buffer 
zone was established from the shoreline towards the lake to prevent the misidentifica-
tion of trees as reeds. To ensure consistent spatial resolution across all bands for ease 
of analysis, all S2/MSI images were resampled to a final spatial resolution of 10 m. 
This process aligns the data to a uniform grid, which simplifies subsequent image 
processing and analysis steps.

The most important test in this study was the application of binary classification 
methods for indices to classify and evaluate the changes in reed bed areas using Earth 
observation data. The primary indices used for the classification were the Water Ad-
justed Vegetation Index (WAVI, eq. 1) and the Normalized Difference Water Index 
(NDWI, eq. 2). These indices were automatically classified into water and reeds using 
seven binary thresholding algorithms, selected out of sixteen available algorithms in 
Fiji software (Schindelin et al., 2012). The thresholding algorithms employed include 
Otsu (Otsu, 1979), Yen (Yen et al., 1995), RenyiEntropy (Kapur et al., 1985), Triangle 
(zack et al., 1977), Mean, and Iso (Ridler and Calvard, 1978). The thresholding al-
gorithms were grouped based on the information exploited from the image histogram 
as per the classification by Sezgin & Sankur (2004): Otsu, Mean, and Iso are defined 
as clustering thresholding algorithms, Yen and RenyiEntropy as entropy thresholding 
algorithms, and Triangle as a geometric thresholding algorithm.

WAVI = (1 + L) 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅+𝐿𝐿      (eq. 2)

NDWI = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅       (eq. 3)

In the SD estimation study (Paper III), the Quasi-Analytical Algorithm (QAA) 
developed by Lee et al. (2015) was tested. This semi-analytical method stands out 
for its capability to estimate SD without the need for recalibration with in situ data, 
a significant advancement over traditional empirical approaches. The QAA is based 
on a mechanistic model that comprehensively accounts for light attenuation, scatter-
ing, and reflection within the water column, as well as the specific properties of the 
Secchi disk. Central to this algorithm is the total absorption coefficient (a) and the 
total backscattering coefficient (bb), from which the diffuse attenuation coefficient 
(Kd) is derived (eq. 4). This coefficient, Kd, is integral to the SD calculation formula, 
involving the minimum value of Kd selected from blue, green, and red bands, and the 
minimum above-surface Rrs of the band with the lowest Kd value. The QAA method 
(eq. 5), therefore, offers a robust and adaptable framework for monitoring SD across 
diverse aquatic environments, enhancing the utility of imagery in water clarity assess-



31

2.  Materials  and methods

ments. The approach’s precision is further refined by accounting for the solar zenith 
angle, computed using the Python library pytz (Bishop, 2002), and by selecting the 
appropriate reference wavelength based on the specific characteristics of the observed 
water body.

KT_Kd = 1.04∗(1+5.4𝑢𝑢)
0.5

1 (1−𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)2
𝑅𝑅𝑅𝑅2 )

0.5
⁄

       (eq. 4)

SD = 1
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘∗𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙 (

0.14−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
0.013 )      (eq. 5)

Before implementing the QAA for SD calculations, a comprehensive preprocess-
ing of UAV images was essential to ensure data accuracy. This process began with 
image masking and sun glint correction (Figure 5). Initially, four water bodies were 
excluded from the analysis due to factors like excessive cloud glint, proximity to 
the shore, and the presence of emerged macrophytes, which could affect reflectance 
measurements. For instance, in the case of Krūminių Reservoir, the survey conducted 
late in the day resulted in shadows covering half the area; the unshaded portion was 
isolated for analysis using binary thresholding (Walt et. al., 2014). After these exclu-
sions, 39 water bodies remained for the study. Key to this preprocessing step was the 
application of the NDWI, calculated to differentiate between water and non-water 
pixels. This index was further processed using the Yen thresholding method to mask 
non-water pixels as NaN values, an approach that was also applied to the NIR band 
for identifying and masking areas affected by sun glint. In cases where water waves 
generated significant sun glint, correction algorithms developed by Hedley et al. 
(2005), Goodman et al. (2008), Lyzenga et al. (2006), and Joyce (2005) were tested. 
These algorithms consider water surface reflectance as a linear combination of water 
reflectance and sun glint reflectance, with models using examples on image parts 
where pixels are unaffected by sun glint. The applied method varied based on NIR 
values, with adjustments made for the different spectral bands.
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Figure 5. (a) RGB image before the sun glint correction; (b) deglinted RGB image using 
Hedley’s method; (c) boat removed from normalized difference water index using Yen’s 

threshold, and recalculated to SD; (d) threshold removed sun glint area from NDWI image, 
recalculated to Secchi depth (reprinted from Paper II).

The data processing for U-Net model training (Paper IV) was conducted on a com-
puter equipped with computational resources of 32 GB RAM, Intel Core i7 8th gen CPU 
and NVIDIA GTX 1070 GPU. To manage memory constraints typical in deep learning, 
high-resolution UAV imagery was segmented into smaller tiles of 256 × 256 pixels, pre-
serving the visibility of objects of interest. From the 163 tiles generated, 17 were selected 
via expert judgment for the training set, ensuring representation of each acquisition date 
and AOI. Six different multispectral data combinations, including RGB bands, RGB 
with heights, and various spectral indices like Normalized Difference Vegetation Index 
(NDVI), NDWI, and Normalized Difference Red Edge Index (NDRE, eq. 5), were used 
to train the models, that were preprocessed using Python with GDAL 3.4.3 (GDAL/
OGR contributors, 2022). These indices were chosen for their spectral sensitivities for 
BW identification: NDVI (Karlsen et al., 2018; Wang et al., 2021), NDWI (Marusig et 
al., 2020; zhang et al., 2018), NDRE (Sharifi and Felegari, 2023). Data augmentation, 
involving random rotations and flips, was implemented on one dataset incorporating all 
spectral bands and heights to explore spatial location bias.
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NDRE = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅       (eq. 6)

The UAV-based BW height estimation involved processing digital surface mod-
els and digital terrain models (DTM) using the Geospatial Data Abstraction Library 
(GDAL) to accurately determine the height of the BW deposits. The collection of this 
data was critical in enhancing the accuracy of UAV-based BW height estimations and 
in validating remote sensing methodologies applied in the study.

The U-Net architecture (Figure 6), originally introduced by Ronneberger et al. 
(2015), was adapted for this study, considering its effectiveness in handling smaller 
datasets and precision in complex image segmentation tasks. The architecture was 
modified for multispectral images with added layers, padding, and a dropout of 20% 
as a regularization technique (Srivastava et al., 2014). Model training utilized Py-
thon 3.9 and Keras 2.3.1 (Chollet, 2015), with TensorFlow 2.1.0 (Abadi et al., 2016) 
for custom operations. The training, set for 100 epochs, employed an early stopping 
mechanism to prevent overfitting, which was halting if no improvement occurred af-
ter 6 consecutive epochs. The loss function was a combination of Dice loss (Milletari 
et al., 2016) and focal loss (Lin et al., 2017), balancing class overlaps and focusing on 
poorly trained pixels.

The labeling facilitates the U-Net convolutional neural network model’s differen-
tiation of BW from other classes like sand or water. This process, crucial for evaluat-
ing the model’s effectiveness in BW identification, involved using the “Labkit” plugin 
in ImageJ FIJI for supervised machine learning-assisted labeling, with manual review 
and corrections by experts. These labeled images were processed in ImageJ and ex-
ported as TIFF files. Masking focused on identifying BW accumulations, sometimes 
roughly in cases of small, dispersed BW. Multispectral images were composed into 
three-band TIFF images using green, blue, and near-infrared bands for visual labeling. 
Pixels in these images were categorized into five classes: 0 for BW, 1 for potential 
underwater beach wrack, 2 for water, 3 for sand (including pebbles and rocks), and 4 
for other objects, with the background labeled as “other”. Notably, the near-infrared 
band was instrumental in distinguishing between small rocks and BW, a task difficult 
in RGB images (Arzt et al., 2022).

The image segmentation workflow started with labeled TIFFs for pre-processed 
images. In the end the Smoothly-Blend-Image-Patches (Vooban, 2018) package was 
used to eliminate edge effects in patching images.
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Figure 6. U-NET architecture used (modified from Ronneberger et al., 2015)

2.4. Statistical methods and validation

The statistical approach applied involves a combination of traditional statistical 
methods and spatial image segmentation and classification techniques (Paper II and III).

The most suitable index along with a threshold was selected after post validation 
with 12 UAV orthophotos (see 2.2.1. UAV Techniques, Table 1). Polygons of 10 m2 
from orthophotos were classified as vegetation or water, and compared to overlap-
ping pixels of reed beds derived from satellite data. The accuracy of the satellite-
derived reed beds was assessed using a confusion matrix (Ting, 2017), with the Area 
Under the Curve (AUC; Egan, 1975) alongside sensitivity and specificity calculated 
to ascertain the most accurate approach for reed bed area mapping utilizing satellite 
imagery. Thresholding algorithms, used for the masking of water and leaving aquatic 
vegetation, achieving a sensitivity and specificity value equal to or higher than 0.5 
were deemed suitable, indicating a correct classification for 50% of the data. After the 
rejection of unsuitable thresholding algorithms, the t-test with the post hoc Bonferroni 
correction was applied to ascertain differences among the mean AUC values of differ-
ent thresholding algorithms based on indices (WAVI or NDWI).
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Further validation was carried out on the thresholding algorithm’s reliability at cer-
tain vegetation density using the confusion matrix of the best performing Sentinel-2/
MSI index with the thresholding algorithm. Dunnett’s post hoc test was utilized to 
compare the mean AUC of the group (each vegetation density) to a control group (AUC 
value of 0.5), representing poor discrimination between classes (Mandrekar, 2010).

Lastly, the estimated density values of reed beds in AOIs were retrieved from Sen-
tinel-2/MSI data using WAVI, and validated with the density visually determined in 
percentages from UAV orthophotos. A linear regression was derived from WAVI val-
ues, averaged over each density class of vegetation, which was then utilized to convert 
WAVI values to extrapolate density values.

The investigation of SD accuracy (Paper III) leveraged generalized additive mod-
els to explore the relationships between the discrepancies in modeled and in situ SD 
values against a specified set of independent variables: CDOM, Chl-a, turbidity, and 
solar zenith angle. Generalized additive models were selected due to their adeptness at 
modeling nonlinear associations while accommodating interactions among predictors. 
The significance and relative importance of the independent variables were defined 
through F and p-values, with a p-value below 0.05 denoting a statistically significant 
relationship. The analysis was executed utilizing the R programming language, em-
ploying the mgcv package (Wood, 2023) library for statistical parameter estimation 
and the ggplot2 (Wickham, 2016) library for data visualization.

The accuracy of these methods, as well as for reflectance validation, was evaluated 
using bias, while the root-mean-square deviation (RMSD) was used as an indicator of 
the QAA model’s precision, and the Pearson’s correlation coefficient (r) described the 
relationship strength between the model’s output and the real data values. 

In evaluating the model’s performance of BW (Paper IV), during its training phase, 
the data was divided into two subsets: 80% was allocated for training and 20% for 
validation, a standard approach to prevent overfitting and assess the model’s general-
ization capacity. This division ensured that the model had a sufficiently large dataset 
for learning essential features, while also providing a distinct data set for performance 
evaluation. A separate validation set encompassing all tiles was utilized to test the 
model’s generalization to new data. The model’s performance was evaluated using 
several metrics: precision, recall, F1 score, and Intersection over Union (IoU). Pre-
cision is the ratio of correctly predicted positive values to the total predicted posi-
tives, while recall is the fraction of correctly predicted positive values to the total 
actual positive values. The F1 score merges precision and recall providing a balanced 
performance metric. IoU, also known as the Jaccard Index, goes beyond pixel ac-
curacy to evaluate the resemblance between predicted and ground truth labels. The 
effectiveness of the chosen models was assessed on test data by comparing the IoU 
metric across different AOIs and classes. While no single IoU threshold is universally 
applicable, a threshold of 0.5 is typically employed for accurate segmentation. In 
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this study, IoU values above 0.7 were deemed high, those between 0.5 and 0.7 were 
considered moderate, and values below 0.5 were categorized as low.

To our knowledge, only two studies (by Pan et al., 2021 and Karstens et al., 2022) 
have previously been conducted in the context of UAVs monitoring BW. These stud-
ies employed object-based image analysis and achieved a high producer accuracy of 
over 80% in classification. In contrast, this research primarily used the IoU metric, 
which is considered superior, particularly when used alongside other measures like 
the F1 score. The IoU metric is more reliable because it considers the entire area, un-
like methods that use random samples of points or polygons, as suggested by Müller 
(2022). However, a significant drawback is that the labeling process for metrics that 
encompass an entire image is time-consuming, particularly for large datasets like the 
29 mosaiced orthophotos in their study, but after the initial training, the U-Net model 
can be applied to new images, instead of labeling the entire image, the results can be 
adjusted and used as labels for further training rounds, thereby reducing labeling time 
and progressively enhancing the model’s accuracy and generalizability.

Dunn’s test was used for post-hoc pairwise comparisons of IoU between AOIs, 
with p-values adjusted using the Bonferroni correction to account for multiple com-
parisons. A one-way ANOVA test was conducted to compare averages. All statistical 
analyses were performed using numpy (Harris et al., 2020), scipy (Virtanen et al., 
2020), statsmodels (Seabold and Perktold, 2010), and sklearn (Pedregosa et al., 2011) 
Python packages, with a significance level set at 0.05.

Lastly, in situ measured heights were compared with heights derived from UAV 
data using Pearson’s correlation coefficient. The precision of these measurements was 
further quantified through Root Mean Square Errors (RMSE) and Mean Absolute Er-
ror (MAE) across separate AOIs.

Mean Absolute Percentage Deviation (MAPD) and RMSD are two measures of ac-
curacy used to compare forecasting errors of different models for a particular dataset. 
RMSD is scale-dependent and always non-negative, with a value of 0 indicating a 
perfect fit to the data. MAPD, on the other hand, is a commonly used metric to mea-
sure the forecasting accuracy of a model, calculated as the average absolute percent 
difference between the actual and the forecasted values.
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Each of the studies collectively contributes to a more comprehensive understanding 
of surface water quality assessment using remote sensing technologies. The first study 
(Paper I) gives a background on parameters and workflows used with UAVs in vegeta-
tion monitoring. The second study (Paper II) demonstrates how remote sensing can be 
used to track changes in aquatic vegetation, specifically common reed beds. This is im-
portant as the presence and health of such vegetation are key indicators of water quality, 
particularly in terms of nutrient levels. The third study (Paper III) complements this by 
using remote sensing to monitor water transparency, another critical water quality pa-
rameter, across a range of lakes with different trophic statuses. Finally, the fourth study 
(Paper IV) expands the scope of this approach to the coastal environment, using remote 
sensing to map the distribution and coverage of BW, an often overlooked aspect of the 
marine ecosystem that can impact water quality. Together, these studies highlight the 
potential of integrating remote sensing data with traditional field methods to enhance 
our capacity to monitor and manage water quality across diverse aquatic environments.

3.1. General guidance for vegetation monitoring using UAV

The authors present a synthesized set of recommendations for applying UAVs in 
vegetation studies, addressing various ecological aspects. The Paper emphasizes the 

RESULTS AND DISCUSSION

3
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importance of selecting appropriate UAV technologies and methodologies tailored to 
four specific research objectives and vegetation characteristics. For species composi-
tion (see 3.1.1.), it suggests employing high spectral resolution and advanced image 
processing techniques to distinguish closely related species. In assessing ecosystem 
structure (see 3.1.2.), the use of LiDAR and high-resolution photogrammetric sen-
sors is recommended to accurately gauge stand volume and complexity. The study 
highlights the utility of hyperspectral and thermal imagery in evaluating plant status 
(see 3.1.3.), particularly for tracking phenology and stress levels. For ecosystem dy-
namics (see 3.1.4.), such as disturbances and regeneration, the Paper advises on the 
strategic use of temporal resolution and frequent UAV surveys, focusing on change 
detection over time. The four parameters are linked to the abiotic factors influenc-
ing vegetation heterogeneity, involving suitable survey designs and data processing 
strategies (Tmušić et al., 2020). These recommendations are derived from a compre-
hensive analysis of existing literature, encompassing a range of ecological studies 
and applications, and aim to guide researchers in optimizing UAV use for diverse 
ecological assessments. The integration of these insights led to the development of an 
interactive workflow graph, accessible on the COST Harmonious website (see https://
www.costh armonious.eu/characterizing-vegetation-complexity-with-uas), providing 
a versatile and simple tool for choosing the right research methods, especially for 
beginners with UAVs. This graph encapsulates the decision-making process in UAV 
vegetation surveys, emphasizing the importance of aligning research objectives and 
ecosystem characteristics with the appropriate UAV survey resolution across spatial, 
temporal, and spectral dimensions.

This research and its framework are beneficial for environmental scientists, ecolo-
gists, and natural resource managers who are engaged in the monitoring and man-
agement of vegetation, its quality, and ecosystem dynamics using remote sensing 
technologies, particularly UAVs. By synthesizing advanced UAV data acquisition 
techniques and integrating them with traditional field methods, the findings offer a 
methodology for comprehensive assessment of ecological parameters across diverse 
environments, from terrestrial ecosystems to aquatic and coastal areas. The insights 
from this review have been important in refining research methodologies in this the-
sis, notably in the analysis of macrophyte changes in Lake Plateliai (Paper II) where 
the suggestion was made for sparse vegetation cover UAV research, by choosing pas-
sive sensor together and high image overlap, and in mapping BW mosaics (Paper IV) 
with the same parameters.

3.1.1 Species composition: highlighting biodiversity

Species composition in vegetation, influenced by spatio-temporal heterogeneity, 
varies across biogeographical zones and biomes (Lambers and Oliveira, 2019; Pug-
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naire and Valladares, 1999). UAV applications in this domain have demonstrated ef-
fectiveness in habitat mapping and monitoring for conservation, with methodological 
choices driven by targeted species or vegetation characteristics (Müllerová, 2019). 
Differentiation of species, particularly those with low spectral and structural diver-
gence, necessitates varying levels of data resolution and complex algorithmic ap-
proaches (Müllerová et al., 2017a; Tamondong et al., 2020). The integration of shape, 
texture, and contextual information enhances species identification precision, espe-
cially when employing low-cost RGB cameras (Franklin, 2018; Gini et al., 2014; 
Pande-Chhetri et al., 2017). Object-based image analysis effectively mitigates the is-
sues of ultra-high spatial resolution, though it requires careful selection of spatial 
resolution to manage spectral, morphological, and variability of proximity character-
istics (Yuba et al., 2021). For complex vegetation, a combination of higher spectral/
spatial/temporal resolution data, multiple data sources, 3D information, and advanced 
algorithms, including machine and deep learning, is crucial (Kattenborn et al., 2020; 
Liu et al., 2018; Martin et al., 2018; Michez et al., 2013).

3.1.2 Ecosystem structure: measuring biomass, volume, and stand com-
plexity

Ecosystem structure, a key driver of resource variability, requires detailed informa-
tion on canopy structure, gaps, and spatial aggregation (Bagaram et al., 2018; Getzin 
et al., 2012; Kent et al., 2015). Most UAV studies primarily focus on forests, employ-
ing 3D data from various sensors to analyze stand complexity and quantify biomass 
(Cunliffe et al., 2016; Meneses et al., 2018; Swetnam et al., 2018). The use of LiDAR 
sensors is pivotal for generating digital terrain models and assessing structural layers, 
particularly in dense stands (Aguilar et al., 2019; Camarreta et al., 2020; Giannetti et 
al., 2018; Kašpar et al., 2021). Photogrammetric point clouds, derived through tech-
niques like structure from motion, offer a lower-cost alternative for less dense stands, 
though they face challenges in dense or vertically complex canopies (Baltsavias et 
al., 2008; Dandois and Ellis, 2010; White et al., 2015; Westoby et al., 2012; Seifert et 
al., 2019). Combining data sources, such as adding spectral properties to LiDAR, and 
precise co-registration of different datasets, can enhance structural analysis (Lisein et 
al., 2013; Wallace et al., 2016).

3.1.3 Plant status: phenology and plant stress

Plant status, encompassing phenological stages and physiological responses to 
stressors, benefits from the high spatial and temporal resolution of UAVs (D’Odorico 
et al., 2020; zarco-Tejada et al., 2012). While extensive research exists in agricultural 
and forestry contexts, studies in species-rich natural ecosystems are limited (Banerjee 
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et al., 2020; zhang et al., 2017). Phenomena ranging from distinct spectral properties 
to more subtle indicators require sophisticated hyperspectral and thermal sensors cou-
pled with complex modeling (Jones and Vaughan, 2010; zarco-Tejada et al., 2012). 
Thermal imagery and leaf energy balance models are effective in early detection of 
stress, particularly in assessing drought and herbivory impacts (Gago et al., 2017; 
Smigaj et al., 2019; zarco-Tejada et al., 2013). UAVs also enable detailed monitoring 
of phenological stages, offering the flexibility for timely data acquisition and high-
resolution observation of individual plants (Carl et al., 2017; Müllerová et al., 2017b; 
Fawcett et al., 2021; Gago et al., 2020).

3.1.4 Ecosystem dynamics: disturbances and regeneration

UAVs are instrumental in studying dynamic natural processes, particularly in 
aquatic plant composition, ecosystem structure, and plant status, by employing a 
change detection approach in repeated measurements (Berra et al., 2019; Fawcett et 
al., 2021; Park et al., 2019; Laslier et al., 2019; Michez et al., 2016). Their flexibility 
is crucial in responding to dramatic events like floods or significant water quality 
changes, thus facilitating immediate data collection while minimizing field survey 
risks (Novković et al., 2023). UAVs aid in understanding and early detection of dis-
turbances within aquatic ecosystems, utilizing a range of sensors from sophisticated 
hyperspectral to consumer-grade cameras (Song & Park, 2020; de Castro et al., 2021; 
Chabot et al., 2017). The integration of UAV and satellite data can extend monitoring 
over larger areas, enhancing the assessment of outbreak patterns and guiding aquatic 
management strategies.

3.2. UAV and satellite analysis of reed bed dynamics in Plateliai 
Lake

The reed bed research applied seven distinct binary thresholding algorithms to 
classify the vegetation indices (NDWI and WAVI) and validated these results with 
high-resolution orthophotos from UAV surveys. 

3.2.1 Effectiveness of automatic workflow and satellite image analysis

It is important to note that the utility of Earth observation data is constrained by the 
lack of high-resolution validation data. This limitation requires the use of supplemen-
tary methods for ground-truthing and enhancing the accuracy of interpretations made 
from satellite observations (Ozesmi and Bauer, 2002). Earth observation application 
along with other techniques, such as UAV-based surveys, can offset its resolution lim-
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itations. For instance, UAV data, with its higher resolution and flexibility, can serve 
as an effective validation tool for the macrophyte areas identified by Earth observa-
tion satellites, enhancing the overall accuracy of the vegetation analysis (Anderson 
and Gaston, 2013). Therefore, while acknowledging its limitations, the use of Earth 
observation data remains a useful approach in the context of long-term ecological 
monitoring and management strategies for aquatic environments. 

The findings revealed that five thresholding algorithms, namely Triangle, Iso, Li, 
Mean for WAVI, and Triangle for NDWI, frequently misclassified water as a veg-
etated area in over half of the evaluated cases, indicating a specificity lower than 
0.5 (Table 2). The remaining thresholding algorithms, for WAVI and NDWI – Otsu, 
RenyiEntropy, Yen and just for NDWI – Iso, Li, Mean, demonstrated a specificity 
rate higher than 0.5, accurately distinguishing water in more than 50% of the cases. 
However, four thresholding algorithms, Otsu, RenyiEntropy, Yen for WAVI, and Otsu 
for NDWI, exhibited a sensitivity lower than 0.5. Therefore, these algorithms were 
excluded from further analysis, narrowing the focus to five NDWI index thresholding 
algorithms: RenyiEntropy, Yen, Iso, Li, and Mean.

Table 2. Performance of reed bed classification using seven thresholding algorithms for 
WAVI (top) and NDWI (bottom). Performance was measured by mean (± standard deviation) 

area under the curve (AUC), sensitivity and specificity. The best performing threshold and 
index is marked with “*” symbol.

Parameter Otsu Renyi 
Entropy

Yen Triangle Iso Li Mean

WAVI

AUC all 0.67 ± 0.12 0.72 ± 0.14 0.70 ± 0.13 0.64 ± 0.19 0.59 ± 0.12 0.59 ± 0.13 0.65 ± 0.19

Sensitivity 
all

0.34 ± 0.23 0.45 ± 0.28 0.40 ± 0.25 0.95 ± 0.07 0.74 ± 0.35 0.77 ± 0.31 0.95 ± 0.07

Specificity 
all

1.00 ± 0.00 0.99 ± 0.02 0.99 ± 0.02 0.33 ± 0.43 0.45 ± 0.50 0.41 ± 0.51 0.34 ± 0.43

NDWI

AUC all 0.71 ± 0.14 0.70 ± 0.14 0.76 ± 0.12* 0.75 ± 0.17 0.74 ± 0.17 0.73 ± 0.17 0.64 ± 0.16

Sensitivity 
all

0.42 ± 0.27 0.54 ± 0.29 0.53 ± 0.23 0.86 ± 0.19 0.83 ± 0.14 0.84 ± 0.13 0.70 ± 0.26

Specificity 
all

0.99 ± 0.02 0.97 ± 0.06 0.98 ± 0.06 0.43 ± 0.47 0.63 ± 0.42 0.65 ± 0.42 0.69 ± 0.44

Among these, the Yen thresholding algorithm for the NDWI index exhibited the 
highest mean AUC. Nevertheless, the Bonferroni post hoc correction revealed no sta-
tistically significant difference (p > 0.05) when compared with the other thresholding 
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algorithms. A marked difference was observed in the mean specificity of the Iso, Li, 
and Mean thresholding algorithms, which was about 30% lower than that achieved 
by RenyiEntropy and Yen. This discrepancy led to a considerable number of false 
positive values in one of the validation images (Figure 7, a). The mean AUC and 
specificity of RenyiEntropy were marginally lower than those of the Yen thresholding 
algorithm. Hence, the Yen thresholding algorithm was chosen as the final method for 
classifying vegetated areas and water. In contrast with the Li threshold, which showed 
an overestimation of reed beds in the open lake area, the Yen thresholding accurately 
depicted the distribution of reed beds without overestimation (Figure 7, b).

Figure 7. NDWI index (derived from Sentinel-2/MSI image acquired on 17 July 2018) with (a) Li 
threshold showing overestimation of reed beds in the open lake part, and (a) with Yen thresholding 

showing the distribution of reed beds with no overestimation (reprinted from Paper II).

Further analysis using the Dunnett post hoc test indicated higher AUC values for 
both high (df(43) = 5.78, p < 0.05) and medium (df(43) = 4.30, p < 0.05) vegetation 
densities compared to a baseline AUC value of 0.5 (i.e. no discrimination between 
classes), indicating the accuracy of 50-80 % and 31% for high and medium densi-
ties respectively. No significant differences were observed in low-density vegetation 
(df(43) = 2.12, p = 0.1) compared to the same baseline. The mean specificity for all 
vegetation densities was consistent and exceeded 0.97 (Figure 8). The mean sensi-
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tivity values for high and medium vegetation densities were reliable, being higher 
than 0.5. The sensitivity for low vegetation density was less than 0.5. Therefore, the 
delineation method used is recommended primarily for denser reed beds, potentially 
leading to a 15% underestimation. 

Figure 8. Mean area under the curve (AUC), sensitivity and specificity using Yen 
thresholding for NDWI, considering different densities of vegetation derived from the 

UAV data. The red line marks a value of 0.5 below which indicates random discrimination 
between classes (reprinted from Paper II).

When comparing vegetated regions identified in satellite imagery to those mapped 
using UAV orthophotos, a slight underestimation was noted. These minor discrepan-
cies are likely attributable to the substantial difference in spatial resolution between 
the orthophotos, which are at 2 cm/pixel, and the S2/MSI with 10 m/pixel resolution 
(Bollas et al., 2021).

Another reason for the underestimation of vegetation area partly stemmed from 
including areas with low-density vegetation. To enhance the detection of vegetation, 
the incorporation of a short-wave infrared (SWIR) band is recommended (Oyama et 
al., 2015). The Modified Normalized Difference Water Index (MNDWI), incorporat-
ing SWIR, reportedly achieves better results than the NDWI (Xu, 2005) and outper-
forms the Sentinel-2 Water Index (SWI) in classification accuracy (Jiang et al., 2020). 
However, the SWIR band originally acquires data at 20 m resolution and, therefore 
needs resampling to 10 m resolution for consistency in the study of reeds, which may 
enhance misclassification.



44

3.  Results  and discussion

3.2.2 Analysis of reed bed area changes and mowing impact

Significant decreases in vegetation area (≥ 0.1 ha, which is equal to one S2/MSI 
pixel together with a buffer of surrounding pixels combined) were noted during mow-
ing years (Figure 9). In the reference AOI, the reed bed area did not significantly 
change in 2016 and 2017, but the vegetated area showed a notable increase in the 
subsequent years of 2018, 2019, and 2020, exceeding 0.32 ha. During the reference 
years, the average reduced vegetation area was significantly lower (0.8 ± 1.1%) com-
pared to the years when mowing was performed (14.7 ± 13.0%), with a statistically 
significant difference (df(35) = −6.3, p < 0.01). Additionally, the remaining vegetation 
was higher in the reference years (35.5 ± 28.6%) than in the mowing years (18.3 ± 
11.6%), again showing a significant difference (df(35) = 3.46, p < 0.01). The impact 
of mowing on vegetation is observable from EO data, especially in areas larger than 
0.1 ha, where reduced vegetative coverage is distinctly evident compared to non-
mowed reference AOI (Figure 9). The years with mowing activities also exhibited a 
significantly greater reduction in vegetation. 

Figure 9. Boxplots of estimated reed bed areas (ha) in 8 AOIs derived from S2/MSI images 
after removal of water pixels determined by the Yen thresholding algorithm for NDWI: the 

estimated reed bed areas that were reduced, remained and gained during the study years 
(mowing years 2017–2019). Red dots represent the reference AOI that was not mowed, the 

central line inside each box represents the median, while the edges of the box indicate the 25th 
and 75th percentiles. Hollow points show the outliers (note the different scales for the area).

Continuous mowing is essential for sustained reed management, as highlighted by 
Ailstock et al. (2001), Asaeda et al. (2006), and Derr (2008). The 2017–2019 manage-
ment program indicated a notable reduction in reed bed areas, implying successful 
nutrient removal, however, the regrowth of reed areas in 2020 necessitated repeated 
mowing due to eventual reed recovery, as observed in the post-mowing years. The 
average gained vegetation area of all AOIs was highly influenced by the year follow-
ing the completion of mowing, 2020, in which the average vegetation gain of all AOIs 
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was significantly higher (30.4 ± 18.8%, 0.69 ± 0.74 ha) compared to the preceding 
years: 7.2 ± 6.8% in 2017, 11.8 ± 16.9% in 2018, and 10.7 ± 12.5% in 2019, with a 
significant statistical difference (df(21) = −5.2, p < 0.01). This is confirmed by Derr 
(2008) who notes that the reed regrowth rate can decrease by about 55% only with 
herbicide application after mowing.

3.2.3 Implications for water body management and reed  
bed density recovery

WAVI was a reliable proxy for the reed density since the mean WAVI and emergent 
vegetation density, assessed from UAV data, strongly correlated (rS = 0.99, p < 0.05). 
Using a derived linear regression function, WAVI values below 0.04 were considered 
as water with 0% vegetation and values over 0.22 as fully covered by reeds with 100% 
vegetation. 

A significant difference in average change (Figure 10) was found in years 2016 
with vegetation density being higher by 36.2 ± 19.2%, lower in 2018 by 17.9 ± 11.3% 
and higher again in 2019 by 28.0 ± 21.1%; however, significant (df(7) = 0.43, p > 0.05) 
change was not found in the first mowing year with an average of −1.8 ± 26.4% lower in 
the vegetation density, and the reference year 2020 lower on average by −12.0 ± 35.1% 
(df(7) = 0.2, p > 0.05).

Figure 10. The relative reed density of 8 AOIs estimated from WAVI values retrieved from 
sentinel-2/MSI images during 2016–2020 (mowing years 2017–2019). The beginning of ve-
getation season is indicated by dark green and the end of vegetation season – the light green 

color. Red dots show the density of reference AOI not included in the mean density.

The natural vegetation change seen from the reference year (2016), when mow-
ing did not occur, shows that density increases naturally at the end of the vegetation 
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season. This higher estimated vegetation density after mowing might be attributed 
to vegetation season, since the reeds reach their physiological maturity at the end of 
August (Villa et al., 2013). Interestingly, despite the lowest vegetation densities being 
recorded in 2018, which corresponded with the smallest vegetation areas, no signifi-
cant relationship (r = 0.05, p > 0.05) was found between changes in the vegetated area 
and estimated vegetation densities.

The lack of correlation was consistent even when only considering AOIs with sig-
nificant vegetation area loss or gain. This mismatch could be partially accounted due 
to one satellite image (2019 July 12) that was used for validation with UAV images, 
that had a low intra-class variance due to a cloud haze that was not fully corrected by 
Sen2Cor atmospheric correction (Gao & Li, 2012; Richter et al., 2011). This could 
have an influence on the final results of this image classification by used algorithms 
(Triangle, Iso, Mean, and Li) and also on density values that do not match area results, 
where area decreased but density increased. Therefore, as the gained vegetation area 
was significantly higher next year (2020) when mowing ended, this suggests that the 
reed bed areas recover over time and mowing will have to be repeated (Corti Meneses 
et al., 2018; Fogli et al., 2014; Rapp et al., 2012).

Remote sensing techniques offer a broader, more frequent perspective on lake eco-
systems, complementing traditional macrophyte monitoring methods like those of the 
Environmental Protection Agency (EPA) Ireland and EPA Illinois. The approach used 
in this study is cost-effective and enables monitoring beyond just mowed areas. Timely 
satellite data aids in determining optimal mowing times, varying per lake management 
goals (Fogli et al., 2014). UAV data is gaining favor for validating satellite images due 
to its accuracy and wider coverage (Kattenborn et al., 2019). Conducted by mowing per-
sonnel or lake managers, UAV flights, coupled with structure from motion techniques, 
can precisely quantify above-ground biomass (Meneses et al., 2018). This multi-faceted 
approach, blending satellite and UAV data, enhances lake environment management.

3.3. Enhanced water clarity assessment via unmanned  
aerial vehicle imagery

Several sun-glint correction methods – Hedley, Goodman, Lyzenga, Joyce, and 
threshold-removed glint were applied to refine the estimation of Secchi depth (SD) 
from UAV multispectral imagery. 

3.3.1 Choice for sun glint correction

The application of sun glint correction methods in multispectral images yielded mixed 
results in terms of the RMSD and bias. The data revealed a consistent pattern across the 
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green (560 nm), blue (475 nm), and red (668 nm) bands, with the green band consistently 
showing the peak mean value and the blue band indicating the lowest mean value. This 
spectral feature remained robust across all correction methods and in situ data.

Regarding multicollinearity, the green and red bands demonstrated the strongest 
correlation with a value of 0.97, followed by green and red edge at 0.96, and red and 
red edge at 0.95. The blue band also had strong multicollinearity with other bands, 
exhibiting correlation values of 0.97 with green, 0.94 with red, and 0.91 with red 
edge. These correlation metrics align well with the notion that factors such as a weak 
water surface signal and the rough texture of the water’s surface can lead to both sys-
tematic and random inaccuracies in detecting the water surface, as noted by Wang et 
al. (2022). Furthermore, the association with the blue band was found to be the least 
stable, due to a higher susceptibility to scattering, a characteristic common to these 
wavelengths in aquatic settings, as described by zaneveld et al. (2005), as CDOM 
primarily absorbs light within the ultraviolet and blue spectrum, it results in a dimin-
ished signal captured by sensors (Warren et al., 2019). Among the correction methods 
evaluated (Figure 11), Lyzenga showed the highest mean values across all bands, 
while Goodman showed the lowest. This contrasts with other studies, such as the one 
by Muslim et al. (2019), which indicated Lyzenga as the most accurate for mapping 
coral reefs. However, Goodman method showed the highest correlation for the green 
and red edge bands, with r values of 0.90 and 0.92, respectively, while having low r 
values for blue and red bands (0.32 and 0.71, respectively). This implies that environ-
ments with different amounts of water quality indicators (e.g. CDOM, chl-a, turbidity 
etc.) may influence the effectiveness of the correction methods.

Notably, the RMSD for Goodman ranged from 0.002 to 0.005, underscoring its 
effectiveness in applications where low reflectance intensity deviation is required. 
A comparable approach was utilized in a research by Muslim et al. (2019), which 
involved testing various techniques for correcting sun glint. They discovered that the 
Lyzenga method was the most precise. However, it is important to acknowledge that 
their study primarily aimed at mapping coral reefs, and the bottom was visible in 
much of their research area, potentially impacting their findings. On the other hand, 
Windle and Silsbe (2021) observed that the Hedley method had the best performance 
in terms of the highest correlation coefficient (r) and the lowest RMSD. These results 
align closely with those from our study.
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Figure 11. Reflectance compared by the mean correlation coefficient (r), root-mean-square 
deviation (RMSD) and bias for each correction method to in situ measurements, across 
all available wavelengths. Both RMSD and bias were expressed in reflectance units sr-1 

(reprinted from Paper III).

It is worth mentioning that applying glint correction to the entire image rather than 
just the binary thresholded area appeared to yield better results in terms of overall ac-
curacy, suggesting that future research should consider a broader application of these 
methods.

Overall, the Goodman and Hedley sun glint correction methods demonstrated the 
best performance, with Goodman showing the highest correlation for the green and 
red edge bands and Hedley consistently performing well across all bands, suggesting 
their potential for further use in correcting sun glint in multispectral UAV image data.

3.3.2 Quasi-Analytical Algorithm-derived Secchi depth compared to in situ 
measurements

The performance evaluation using the QAA model to retrieve SD revealed high 
correlation values across all sun glint correction methods when compared to in situ 
measurements. Specifically, the r values ranged from 0.74 for the threshold-removed 
glint method to 0.92 for the Hedley glint correction. RMSD values varied between 
0.65 m and 1.05 m, and biases ranged from -0.78 to 0.58 m, indicating overall ac-
ceptable performance. The study noted similar trends in the accuracy for both when 
comparing band reflectances and SD values.

Among the methods, Hedley sun glint-corrected images (Figure 12) achieved the 
best RMSD measure of 0.65 m, with a slightly smaller r value of 0.91 compared to 
the Goodman method ( r = 0.92, RMSD = 1.00 m). It’s important to mention that the 
Goodman method underestimated most SD values.
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Figure 12. Scatter Plots with linear regression line and 95% degrees of freedom (green) of 
modeled and in situ SD. Best-fit line (1:1) (black) for each image dataset, using Hedley and 

Goodman methods.

Hedley and Goodman methods stood out as the most effective, albeit with specific 
limitations, where the Hedley method achieved the lowest RMSD (0.65 m) with an r 
of 0.91, while Goodman showed the highest r value of 0.92 but a higher RMSD (1.00 
m). It was noticed that selecting the most appropriate sun glint correction method 
might require considering multiple metrics depending on the application. This com-
bined analysis of the performance of various sun glint correction methods reveals that 
while some methods excel in certain metrics, they may not perform as well in others, 
therefore, informing future research to aim for improving the generalization of reflec-
tance correction methods.

3.3.3 Influence of Water Constituents for Quasi-Analytical Algorithm 
Secchi Depth Values

The average in situ SD of the lakes was measured to be about 1.91 m, with varying 
amounts of CDOM, Chl-a, and turbidity. The GAMs (Figure 13) explained around 
38% of the variance in the SD measurements, where significant environmental factors 
were CDOM (F = 6.808, p-value < 0.05) and the sun zenith angle (F = 4.84, p = 0.02).
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Figure 13. Interaction plot of solar zenith angle. CDOM and predicted difference plane 
between in situ and modeled SD (m). Partial dependence plots for parameters influencing SD 

significantly – CDOM m-1 and solar zenith angle (reprinted from Paper III).

Notably, Chl-a (F = 0.295, p = 0.59) values did not make a significant impact on 
the model. Additionally, high solar zenith angles, especially above 70 degrees, were 
found to reduce the accuracy of modeled SD, sometimes underestimating it by up to 
1.5 m. This likely results from increased scattering and absorption of light at higher 
angles, which reduces the amount of light reaching the water surface, thus widening 
the gap between modeled and on-site SD measurements (Hashimoto et al., 2019). 
Therefore, this finding highlights the importance of advanced algorithms capable of 
accurately accounting for these complex environmental variables in SD predictions. 

The correlation between in situ SD measurements and the estimated SD values 
from models might be attributed to how these models handle factors like CDOM and 
solar zenith angles, which are key to model accuracy. Since CDOM predominantly 
absorbs light in the ultraviolet (UV) and blue spectrum, leading to a reduced sig-
nal detected by sensors (Warren et al., 2019), this aligns with our finding where the 
blue band showed weaker correlations between in situ and UAV-derived reflectance 
measurements (Mamaghani and Salvaggio, 2019). It suggests that the methods de-
veloped by Goodman and Hedley might be more effective in addressing this issue, as 
evidenced by the Hedley method achieving the highest correlation coefficient (r) and 
the Goodman method recording the lowest RMSD for blue band reflectance, thereby 
aligning more closely with in situ values.
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3.4 Unmanned aerial vehicle based beach wrack quantification

 The study applied UAV camera bands, height measurements, and spectral indices 
for beach wrack segmentation using the U-Net convolutional neural network.

3.4.1 Performance evaluation across data combinations and classes 

In the study of the U-Net model’s performance across various data combinations (5 
bands and height, 5 bands, RGB and height, RGB, augmented and band ratio indices), 
the model exhibited its highest effectiveness when using the “band ratio indices” com-
bination, particularly in the segmentation of BW. This was evidenced by an F1 score 
of 0.86 and an IoU of 0.75 (Figure 14). Such results underscore the model’s profi-
ciency in semantic segmentation tasks, especially when applied to high-resolution re-
mote-sensing images collected by UAV. Despite this, it is noted that all combinations 
yielded relatively lower IoU scores for the potential BW class, indicating a variation 
in the model’s performance across all classes (BW, potential BW, sand, water, other). 
The post hoc tests revealed that the differences in performance between various data 
combinations were not statistically significant, with p-values ≥ 0.74. This suggests 
that the choice of data combination did not significantly impact the IoU scores. The 
IoU values for BW were moderately consistent across all data combinations, sug-
gesting potential for generalizability and time-based transferability. This is due to the 
dataset including images from various seasons and weather conditions, as highlighted 
in studies by Lu (2016) and Bao et al. (2018), demonstrating UAVs’ effectiveness in 
diverse beach mapping.

For BW segmentation on validation data (Figure 14), the combination utilizing 
“RGB” bands was found to be the most effective, achieving an IoU of 0.42, comple-
mented by an F1 score of 0.54. For the potential BW segmentation, the combination 
of “5 bands and height” was the best, marking an IoU of 0.20 and an F1 score of 0.38. 
The “RGB” and “5 bands” combinations followed closely in performance.

The “RGB” combination emerged superior in both the water and sand classes, with 
IoUs of 0.64 and 0.70 respectively, and commendable F1 scores of 0.76 and 0.82. The 
other class had the highest IoU of 0.95 in the “RGB and height” combination.
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Figure 14. The boxplots present the IoU scores for the six different data combinations 
applied during the U-Net (CNN) model validation. The plots show the distribution of IoU 
scores for each segmentation class: BW, potential BW, water, sand, and other. The central 

line inside each box represents the median, while the edges of the box indicate the 25th and 
75th percentiles. Outliers may be represented by individual points (reprinted from Paper IV).

An overview of the average performance of all data combinations indicated no 
significant difference, with the “RGB” combination recording the highest average 
metrics. The transferability of the model was confirmed through Dunn’s post hoc tests 
for IoU, which showed significant differences (p < 0.05) across various AOIs, with 
Karklė demonstrating distinct performance compared to other AOIs (Figure 15). The 
moderate IoU values for BW across all data combinations underscore the model’s 
potential for generalization and transferability, despite the variability of season and 
weather conditions during the collection of the data. The results reaffirm the utility of 
UAVs in monitoring diverse beach characteristics effectively.

Transferring the model to a new AOI might be challenging, particularly in ar-
eas with less uniform surfaces. In Karklė (Figure 15, b), the inclusion of height data 
resulted in lower performance (BW IoU = 0.37), indicating a need for cautious ap-
plication of height data, as also suggested by Pichon et al. (2016) and Gruszczyński 
et al. (2019). Improving height accuracy might be achieved by incorporating oblique 
images for better digital surface model calculations as mentioned by Taddia et al. 
(2019). The model’s transferability was evident in AOIs with relatively uniform sur-
faces, such as Šventoji, Melnragė, and Palanga, where the predictability of the sub-
strate contributed to successful segmentation. 
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Figure 15. Boxplots for each AOI separately where (a) is Melnragė, (b) Palanga, (c)Karklė 
and (d) Šventoji. Each boxplot represents the results for all data combinations, and notches 

show a confidence interval around the median (reprinted from Paper IV).

Furthermore, the model’s consistency in performance with the augmented data (of 
5 bands and height) combination indicates an absence of bias towards spatial local-
ization, reinforcing its adaptability and transferability across diverse scenarios and 
object placements within the AOIs. The moderate accuracy and lower computational 
demands make the “RGB” data combination preferable for BW segmentation using 
the U-Net CNN. 

The model faces specific challenges in detecting potential BW, largely due to the 
complex nature of aquatic environments and the behavior of light underwater. A key 
difficulty arises from the way water alters light absorption and reflection (Xue et al., 
2016), rendering some remote sensing algorithms less effective due to optical com-
plexities in water bodies, like varying depth, turbidity and waves. Additionally, sun 
glint can mask water-leaving radiance at high solar angles, introducing noise into 
image data, as noted by Gagliardini and Colón (2004). Factors like wave activity 
and sea surface roughness further complicate the optical properties of water, impact-
ing remote sensing reflectance quality (zhang et al., 2018). Enhancing potential BW 
segmentation might require additional preprocessing steps to correct for water depth 
(Nomura et al., 2018) and sun glint effects (I; Windle and Silsbe, 2021;). Efficient 
removal of potential BW is crucial to maintain the ecological balance, odor, and aes-
thetics of beaches. Missing potential BW deposits can lead to underestimation of BW 
accumulation on beaches, thereby impacting beach management strategies. 
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3.4.2. Quantitative analysis of beach wrack heights and areas

The study quantified labeled BW areas ranging from 236 m² to 11193 m². In com-
parison, the U-Net model, utilizing the “RGB” data combination (Figure 16), derived 
the BW areas ranging from 9 m² to 3710 m². The average labeled area was 1888 ± 
2199 m², corresponding to the U-Net derived area of 1218 ± 940 m², indicating a gen-
erally linear relationship but with notable variance. In terms of the agreement between 
labeled and segmented areas, the “RGB” combination achieved the highest correla-
tion coefficient (r = 0.87), with the lowest errors (MAE of 562 and RMSE of 783).

Figure 16. The areas of BW coverage in the investigated AOIs retrieved from UAV after the 
application of the U-Net model with the “RGB” combination and labeled BW areas (reprin-

ted from Paper IV).

The correlation between modeled and in situ heights was 0.44, which was signifi-
cant (p < 0.05). However, the average calculated BW height from UAV was 0.46 ± 
0.40 m, which was a five-fold overestimation compared to in situ measured heights of 
0.09 ± 0.11 m, suggesting that heights acquired using the methods in this study should 
be used carefully. Nonetheless, for future research the accuracy of height could be 
improved by taking images with oblique angles in addition to nadir, increasing the 
information available for digital surface model calculations using structure from mo-
tion algorithms (Taddia et al., 2019).

Visual representations of all AOIs indicated that the model performed well in clas-
sifying most of the BW. Discrepancies in classification were noted in specific regions 
of Palanga and Melnragė, even though they were exceptions from the normal classifi-
cation, rather than the rule. The visual outcomes for sand and water classes were most 
accurate, with only minor variations observed. For Karklė specifically (Figure 17, a), 
a clear visible advantage is seen when distinguishing BW from its surroundings using 
multispectral data, where piles of small pebbles (red circle in Figure 17, b) look similar 
in RGB, but with multispectral data, more specifically with NIR the BW can be easier 
delineated. In Melnragė and Šventoji, more misclassifications were seen in the water, 
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where potential BW was being identified. In Šventoji images, wavy water conditions 
added complexity that lowered the detection of BW. However, in Melnragė, during calm 
water conditions, a large amount of sun glint was observable (red hue area in Figure 17, 
d), which was uneven throughout the territory as the clouds disrupted light differently.

Figure 17. Examples of BW spatial distribution in AOIs of Karklė (a) and Melnragė (c) after 
UAV image processing with the U-Net model using the “RGB” combination, with NIR, green 

and blue combination on left, labeled in the center and modeled on the right. Additionally zoom 
in areas of the same images with RGB (left), NIR, green and blue combination (second from 
left), labeled BW (second from right), and modeled BW (right) maps are provided for (b) 17 
September 2021 in Karklė, and same without NIR, green and blue for (d) 16 September 2021 
in Melnragė. zoomed in areas, shown in orange rectangles and red circle in (b) show the area 

where a larger amount of pebbles are located (reprinted from Paper IV).
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Classification of a single image tile requires only about 5 minutes, which is crucial 
for management tasks that demand a rapid assessment of whether the amount of BW 
should be removed. This strategy could significantly advance these coastal monitor-
ing efforts for beach management applications, with the ability of cost-effective and 
efficient monitoring workflows that can adapt to various beach types, without relying 
on extensive computing resources. 

Future directions for research should consider broadening the range of environmen-
tal conditions and selected beach morphologies, to solidify the model’s transferability. 
Refining segmentation accuracy could also be achieved by integrating advanced data 
pre-processing techniques as sun glint removal and additional radiometric correction 
to mitigate variable water reflectance and a systematic evaluation of individual spec-
tral bands’ impact on the model’s performance, enhancing interpretability and feature 
classification efficiency.

3.5. Results and discussion synthesis

The suite of studies presented in this dissertation collectively demonstrates a novel 
approach to ecological monitoring, designed to address gaps in traditional monitoring 
methods (Figure 18). These gaps include limited spatial and temporal coverage, la-
bour-intensive processes subject to observer bias, and the underutilization of modern 
technological advances in ecological assessments. By using Unmanned Aerial Vehi-
cles (UAVs) and advanced remote sensing algorithms, this research offers substantial 
improvements in the precision, efficiency, and scalability of ecological monitoring. 
The first study establishes a framework for utilizing UAVs in ecological assessments, 
offering a methodology that resonates through the subsequent papers. This framework 
is essential in navigating the complexity of vegetation monitoring, emphasizing the 
selection of suitable UAV technologies and data processing strategies to address spe-
cific ecological parameters.

Building on this foundation, the second paper explores the dynamics of aquatic 
vegetation, using the Yen binary thresholding algorithm on the normalized difference 
water index to precisely delineate reed beds – an important aspect of water quality 
indicators. This methodological approach showcases the efficacy of combining UAV 
data with satellite imagery, providing an expanded toolkit for long-term monitoring 
and management of aquatic ecosystems.

In the third study, continuing using the first paper a methodological selection guide, 
the quasi-analytical algorithm (QAA) is shown as a tool for assessing water clarity, 
another key indicator of further water quality, in addition to macrophytes from the 
second paper. The use of sun glint correction methods, especially Hedley’s, enhances 
the accuracy of Secchi depth estimations and illustrates the significant role that image 
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pre-processing techniques play in augmenting UAV-derived data, contributing to a 
more nuanced understanding of inland water bodies conditions.

The fourth paper further extends the UAV applications for the coastal domain, 
using a U-Net convolutional neural network model to quantify and segment beach 
wrack with high efficiency. Despite the models varied performance across different 
data combinations, the “RGB” data combination proved to be the most effective in 
general beach wrack segmentation, indicating the potential for the model’s application 
in diverse beach environments.

However, for these methodologies to gain recognition and be adopted as part of 
national monitoring programs, it is essential to conduct further validation and stan-
dardization across varied environmental conditions. This process will involve ex-
tensive field validations to ensure accuracy and reliability, along with collaboration 
with regulatory bodies to align these innovative methods with existing environmental 
monitoring frameworks. These steps are crucial to demonstrate the practical applica-
bility and robustness of UAV remote sensing technology, which has already shown 
promising results in diverse environments – from assessing reed bed dynamics and 
water clarity in inland water bodies to quantifying beach wrack in coastal regions. 
This synthesis of technology and methodology not only bridges the gap between tra-
ditional field methods and contemporary ecological analysis needs but also offers a 

Figure 18. Graphical abstract of all paper synthesis presented in the dissertation.
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scalable, precise, and adaptable framework. The integration of the U-Net model, the 
precision of the Yen thresholding for vegetation detection, and the effectiveness of the 
quasi-analytical algorithm for water clarity measurements demonstrate a harmonious 
integration of UAV technology with machine learning and image processing tech-
niques. This comprehensive approach positions these methodologies to significantly 
enhance national monitoring programs, providing a replicable model for ecological 
research and resource management.
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Integration Across Domains (Paper I)
UAVs have proven to be useful in environmental monitoring scenarios, therefore it 

is worth developing integrated monitoring systems that leverage UAVs for both water 
and land-based environmental vegetation assessments.

Supplement Satellite Imaging for Vegetation Monitoring (Paper II)
Given that satellite imaging alone cannot provide a comprehensive view of vegeta-

tion monitoring, it should be used in tandem with in situ or UAV measurements. The 
Yen binary thresholding on the NDWI index method is effective, especially for reed 
beds with a density of  ≥50%, where classification accuracy is from 50% to 85%.

Suggested use of Quasi-analytical algorithm (Paper III)
Given that Hedley’s method improved the accuracy for SD estimations the most, it 

is suggested to use it as a pre-processing step. The Quasi-analytical algorithm using a 
multispectral UAV camera is recommended for water bodies, where CDOM concen-
tration is less than 12 m-1, while performing the UAV data collection closer to noon, 
when the solar zenith angle is less than 70o.

Recommendations

4
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Secchi depth practical measurements (Paper III) 
The Quasi-analytical algorithm can be integrated into lake monitoring workflows, 

potentially automating the processing of Secchi depth calculation for lakes over 5 
hectares within 20 minutes. With around 6000 lakes in Lithuania, this approach could 
enhance national monitoring, improving the accuracy and coverage of environmental 
monitoring efforts.

Further Testing of Convolutional Neural Network Models for Beach Wrack 
Segmentation (Paper IV)

The U-Net model has shown promising results in segmenting beach wrack. How-
ever, it may benefit from further fine-tuning, specifically if used in other areas, distinc-
tive from this research (e.g. different water reflectance and morphological structures).

Inclusion of Height Data in U-Net Models (Paper IV)
While height data did not significantly improve the model’s performance, its po-

tential should not be entirely dismissed. Future studies should consider the use of 
LiDAR-derived height data, and integrate it into the model.

Computational Resource Optimization (Paper IV)
Given that the U-Net model could run without high-end computing resources it 

allows for wider application for quick BW area classification.
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1. Framework was established for unmanned aerial vehicle surveys, demonstrat-
ing how diverse data resolution, sensor integration, and advanced analytical 
techniques guide the mapping of four identified vegetation parameters, high-
lighting their effectiveness in biodiversity conservation, ecosystem structure 
analysis, phenology, and stress monitoring. This framework guides environ-
mental scientists and resource managers, offering a comprehensive methodol-
ogy for leveraging unmanned aerial vehicle remote sensing to monitor and 
manage vegetation across diverse environments.

2. The changes in reed bed, induced by mowing activities, were effectively de-
tected using the Yen binary thresholding algorithm on normalized difference 
water index derived from the Sentinel-2/MSI data, offering a reliable approach 
for monitoring and managing reed bed dynamics in lakes like Plateliai. The 
significant detection accuracy was enhanced for denser (50 %) reed bed areas 
of ≥0.1 ha.

3. The potential of the quasi-analytical algorithm in estimating the Secchi depth 
was confirmed, with the benefit of its adaptability in analyzing data from mul-
tispectral unmanned aerial vehicle sensors. The accuracy of the Secchi depth 
measurements from unmanned aerial vehicle flights is significantly influenced 
by the sun glint correction methods used, of which the Hedley’s method was 

Conclusions

5



62

5.  Conclusions

found to be the most accurate (r=0.91), allowing the Secchi depth determina-
tion over extensive areas using the quasi-analytical algorithm. 

4. The U-Net model utility in beach wrack segmentation, was particularly effec-
tive with the “RGB” data combination, indicating its potential for coastal mon-
itoring applications. Performance varied across beaches with different geo-
morphological features (e.g., sandy or pebble beaches), suggesting the need 
for adaptation if transferring the model to new areas, by adding new images for 
retraining, that would fine-tune the model. Integrating the multispectral and 
elevation data did not significantly enhance segmentation accuracy compared 
to simpler “RGB” combination.
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ĮvadaS

Vandens telkiniai, įskaitant ežerus, Baltijos jūrą ir jos pakrančių regioną, susidu-
ria su eutrofikacijos iššūkiais, kurie stebimi atsižvelgiant į tarptautines direktyvas, 
tokias kaip: Bendroji vandens politikos direktyva (BVPD), Jūrų strategijos pagrindų 
direktyva (JSPD), Buveinių direktyva ir Helsinkio konvencija. Šiomis direktyvomis 
siekiama užtikrinti tvarų vandens naudojimą ir jūrų ekosistemų apsaugą (Murray et 
al., 2019; Chemin et al., 2004; Dassenakis et al., 2011). Keli svarbiausi eutrofikaci-
jos stebėsenos parametrai yra vandens skaidrumas, makrofitų paplitimas ir maudyklų 
vandens kokybė, į kurią įeina išmestų paplūdimio makrodumblių stebėjimas bei ver-
tinimas pagal Maudyklų vandens direktyvą ir Lietuvos higienos standartus (Europos 
Parlamentas, 2006). Vis dėlto, tradiciniai stebėsenos metodai, pavyzdžiui, vandens 
skaidrumo nustatymas Secchi disku, reikalauja daug darbo, gali būti neobjektyvūs bei 
gali netiksliai atspindėti didesnius plotus (Jiang, 2012; Yu et al., 2014; Pham et al., 
2020; Stock, 2015). Šį iššūkį pabrėžia Bendrosios vandens politikos direktyvos nusta-
tytas reikalavimas vykdyti svarbių vandens telkinių stebėseną ir šalys, pavyzdžiui, Es-
tija ir Švedija, kurios dėl finansinių ir praktinių apribojimų sunkiai įgyvendina šiuos 
tikslus (Dworak et al., 2005; Ministry of Environment, 2009; Alikas et al., 2015).

Europoje makrofitų stebėsena atliekama pasitelkiant įvairius, dažnai transekti-
niais metodais pagrįstus ėminių paėmimo būdus, kuriais siekiama nustatyti aprėptį 
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ir įvertinti ekologinę būklę, tačiau šie in situ matavimai reikalauja daug išteklių, yra 
destruktyvūs, o jų atlikimo dažnumas įvairiose šalyse skiriasi (Poikane et al., 2018; 
Søndergaard et al., 2013; Datta et al. 2021). Pagal Buveinių direktyvą „Natura 2000“ 
teritorijose makrofitų buveinių stebėsena yra svarbi vertinant jų apsaugos būklę (Eu-
ropos Komisija, 2013). Nors atliekant stebėseną yra renkami duomenys apie įvairias 
makrofitų rūšis ir vandens kokybę, į paplūdimį išmestų sąnašų – svarbaus pakrančių 
ekosistemų rodiklio – dabartinėje stebėsenos praktikoje vis dar mažai akcentuojama. 
Šie makrodumbliai yra fekalinių indikatorinių bakterijų ir patogenų, keliančių pavojų 
sveikatai, rodiklis, todėl jų pokyčių stebėsenos protokolui reikalingas persvarstymas 
(Kalvaitienė ir kt., 2023 ir citatos šiame darbe).

Lietuvoje vandens skaidrumo ir makrofitų stebėsena yra neatsiejama ežerų ir pa-
krančių vandenų ekologinės būklės vertinimo dalis, kurios metodai yra patvirtinti Lie-
tuvos Respublikos aplinkos ministerijos ir šiuo metu Lietuvoje kas šešerius metus ši 
stebėsena aprėpia apie 80 ežerų, taip pat visas gėlavandenes buveines, didesnes nei 
50 ha, kaip to reikalauja Bendroji vandens politikos direktyva (Lietuvos Respublikos 
aplinkos ministerija, 2013; Broeck et al., 2015). Vandens skaidrumas skirstomas į 
penkias klases nuo „labai geros“ iki „labai blogos“, nustatant konkrečias geros eko-
loginės būklės ribas: ežeruose „gera“ būklė yra tuomet, kada vandens skaidrumas yra 
didesnis nei 1,3 m, o priekrantės vandenyse – 5,0 m. Vidaus ir tarpiniuose vandenyse 
taikant makrofitų vertinimo metodą imami transektiniai mėginiai, o makrofitų rūšių 
aprėptis vertinama pagal Brauno-Blanquet arba procentinę skalę liepos ir rugpjūčio 
mėnesiais. Tas pats metodas taikomas makrofitų buveinių stebėsenai pagal Buveinių 
direktyvą, pavyzdžiui, Kuršių mariose į raudonąją knygą įtrauktos rūšies Nymphoides 
peltata plotas yra labai svarbus jos buveinės vertinimui naudojant ortofotografines 
nuotraukas (Bučas ir kt., 2023). Šis metodas taip pat galėtų būti tinkamas stebėti di-
delio masto buveinių pokyčius (Sinkevičienė ir kt., 2017), kuriuos sudėtinga įvertin-
ti tradiciniais metodais (transektiniais tyrimais). Be to, paplūdimio sąnašų stebėseną 
dažnai nenuosekliai vykdo vietinės paplūdimių institucijos, vizualiai vertindamos, ar 
paplūdimio sąnašų gausu ir jų daugėja, nesigilindamos į galimą poveikį aplinkai (Lie-
tuvos Respublika, Aplinkos ministerija, 2007). 

Nuotolinis stebėjimas naudojant palydovus, pavyzdžiui, daugiaspektrinį MSI 
(angl. MultiSpectral Instrument) jutiklį esantį Sentinel-2 palydovo platformoje, su-
teikia galimybę stebėti vandens kokybės pokyčius, o didelė erdvinė skiriamoji geba 
ir dažnas grįžimas į tą pačią vietą palengvina aplinkos stebėsenos užduotis (Drusch 
et al., 2012; Chen et al., 2007; Strong et al., 2017). Sentinel-2 MSI jutiklio (S2/MSI) 
regimosios ir artimosios infraraudonosios spektro juostos yra labai svarbios nusta-
tant vandens kokybės rodiklius. Tyrimai, kuriuose naudojami S2/MSI vaizdai, padeda 
atlikti išsamius ekologinius vertinimus (Ghirardi et al., 2022). Nors nuotolinis ste-
bėjimas, patobulintas mašininio mokymosi modeliais, pagerino aplinkos stebėseną, 
suteikdamas platesnę aprėptį ir ekonomiškumą, visgi šie metodai kelia iššūkių, su-
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sijusių su duomenų rinkimu, apdorojimu ir sudėtingų skaičiavimo metodų poreikiu. 
Meteorologinės sąlygos ir saulės padėtis gali turėti įtakos duomenų tikslumui, taip 
pat finansinės palydovinių technologijų palaikymo išlaidos gali riboti jų naudojimą 
(Dugdale et al., 2019; Sibanda et al., 2021).

Nuotolinio stebėjimo srityje pradėtos taikyti bepiločių orlaivių technologijos su 
įrengtomis didelės skiriamosios gebos daugiaspektrinėmis kameromis, tokiomis kaip 
„Micasense Rededge“, kurios leidžia gauti detalesnius vaizdus (2 cm vienam pik-
seliui) nei tradiciniai Žemės stebėjimo palydovai. Šie bepiločiai orlaiviai fiksuoja 
išsamią spektrinę informaciją regimosios, artimosios infraraudonosios ir raudono-
sios juostos diapazonuose, taip pagerindami augmenijos ir vandens kokybės analizę 
(Knoth et al., 2013; Deng et al., 2018). Sujungus dronų ir palydovų duomenis galima 
atlikti išsamią aplinkos analizę, kuri padeda efektyviai stebėti didelius plotus ir gauti 
didelės skiriamosios gebos įvairių parametrų duomenis (Hilton et al., 1984; Lally et 
al., 2019). Pasitelkiant bepiločius orlaivius suteikiama galimybė tirti vandens ekosis-
temas ir jų kokybę, nustatyti povandenines buveines ir įvertinti problemas, pavyz-
džiui, eutrofikaciją, bei pagerinti supratimą apie augalijos sudėtingumą (Dronova et 
al., 2021; zhang et al., 2016; Alvarez-Vanhard et al., 2020; Glasgow et al., 2004).

Visgi bepiločių orlaivių duomenų tikslumui įtakos turi aplinkos veiksniai, tokie 
kaip debesuotumas, vandens drumstumas ir saulės kampas. Visa tai apsunkina duo-
menų klasifikavimą ir ekosistemų analizę (Kislik et al., 2018). Nepaisant šių iššūkių, 
nuotolinio stebėjimo naujovės yra svarbios siekiant išsaugoti ir tvariai valdyti van-
dens telkinius, taip pat jos yra svarbios siekiant priimti įvairaus masto stebėsenos 
sprendimus ir gerinti vandens augalijos valdymą taikant specifinius analitinius meto-
dus (Tomasello et al., 2022; Rowan & Kalacska, 2023). Nuotolinio stebėjimo srityje 
taikomas gilusis mokymasis yra perspektyvi priemonė siekiant nustatyti vandens tar-
šą, automatizuoti vandens kokybės stebėseną ir tobulinti valdymo strategijas jautriose 
aplinkose (Sagan et al., 2020; Kwon et al., 2018; Chang et al., 2017). Vis dėlto, šioje 
srityje tebėra iššūkių, kadangi norint optimizuoti minėtų priemonių taikymą aplinko-
saugoje būtina pašalinti techninius apribojimus.

Tyrimo tikslas ir pagrindiniai uždaviniai 

Disertacijos tikslas – išplėsti bepiločių orlaivių ir palydovų galimybes vertinant 
vandens ir pakrančių ekosistemų eutrofikaciją ir maudyklų vandens kokybę. 

Keturi pagrindiniai šio darbo uždaviniai yra susieti su toliau nurodytais tyrimo 
klausimais ir hipotezėmis, kuriomis siekiama spręsti dabartinės aplinkos stebėsenos 
praktikos problemas:

1. Remiantis bepiločių orlaivių taikymo augalijos tyrimuose sinteze, nustatyti 
bendrus augalijos parametrus, pagal kuriuos formuojama darbo eiga, kuria 
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būtų galima vadovautis planuojant tyrimus bepiločiais orlaiviais. Iš nustatytų 
parametrų sukurti integruotą sistemą, skirtą kartografuoti esminius biologinės 
įvairovės ir ekosistemų funkcionavimo aspektus. (I publikacija)

2. Ištirti palydovinių duomenų pritaikomumą nustatant šienavimo sukeltus van-
dens augalijos, pavyzdžiui, nendrių sąžalynų, pokyčius ir įvertinti, kaip šie 
tyrimai gali prisidėti prie strateginio valdymo priemonių rengimo. (II publi-
kacija)

3. Įvertinti bepiločių orlaivių su daugiaspektrinėmis kameromis efektyvumą nu-
statant Secchi gylį naudojant kvazianalitinį algoritmą vidaus vandens telki-
niuose. (III publikacija)

4. Patikrinti, ar U-Net modeliams naudojamus bepiločių orlaivių daugiaspektri-
nių kamerų duomenis galima pritaikyti pakrančių stebėsenai, tiksliau paplūdi-
mio sąnašų aptikimui ir stebėsenai įvairių tipų paplūdimiuose, kurių kiekvie-
nas pasižymi unikaliomis geomorfologinėmis savybėmis. (IV publikacija)

Darbo naujumas 

Šiuo tyrimu siekiama išspręsti dabartinę nuotolinio stebėjimo duomenų, gautų 
pasitelkiant bepiločius orlaivius ir Žemės stebėjimo palydovus, panaudojimo van-
dens aplinkos stebėsenai Lietuvoje trūkumo problemą. Siūlomi metodo darbo eigos 
variantai galėtų būti taikomi ir kitose vietose esant panašioms aplinkos sąlygoms. 
Šios disertacijos naujumas yra bepiločių orlaivių galimybių pritaikymas ekologinei 
ir aplinkos stebėsenai pasitelkiant tokius metodus kaip gilusis mokymasis ir auto-
matizuota darbo eiga. Svarbus tyrimo naujumo aspektas – didelis vaizdo duomenų, 
surinktų iš įvairių geografinių vietovių, kiekis naudojant pažangią daugiaspektrinės 
kameros technologiją kartu su įprasta RGB kamera. Visa tai gerokai padidina analizės 
detalumą ir tikslumą. Nors atskiruose tyrimuose buvo nagrinėjamas bepiločių orlaivių 
taikymas aplinkotyroje, šiame darbe pateikiama įvairių sričių analizė – nuo vandens 
kokybės vertinimo iki augalijos pokyčių ir žemėlapių sudarymo. Vertinant kvaziana-
litinį algoritmą Secchi gylio nustatymui ir integruojant U-Net konvoliucinius neu-
roninių tinklų modelius paplūdimio sąnašų segmentavimui, šiame tyrime pristatoma 
paprastesnė, anksčiau šiose srityse neišbandyta ekonomiškai efektyvi metodika, gero-
kai sumažinanti laiką ir išteklius, reikalingus tradiciniams Secchi gylio ir paplūdimio 
sąnašų matavimams in situ. Be to, išskirtinis dėmesys pokyčiams dideliuose nendrių 
sąžalynų plotuose dėl šienavimo papildo žinias apie augmenijos valdymą naudojant 
nuotolinius tyrimus. Paskutinis komponentas – bepiločių orlaivių duomenimis parem-
tų ekosistemų sudėtingumo tyrimų sintezė, kuria siekiama sukurti visuotinai taikomą 
augalijos analizės struktūrą. Šiame darbe sujungiami įvairūs tyrimo būdai ir nustatomi 
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tinkamiausi metodai bei darbo eiga, kuria siekiama standartizuoti ir optimizuoti būsi-
mus ekologinius tyrimus naudojant bepiločius orlaivius.

Rezultatų mokslinė ir praktinė reikšmė 

Šioje disertacijoje pristatomi tyrimai iliustruoja Baltijos regiono vandens ekosis-
temų sudėtingumą, pagerina supratimą apie paviršinio vandens kokybę inovatyviai 
naudojant bepiločių orlaivių ir palydovinio nuotolinio stebėjimo technologijas. Inte-
gruojant šias technologijas tyrime pateikiama naujų įžvalgų apie vandens skaidrumo 
ir vandens augalijos pokyčių erdvinę ir laiko dinamiką. Darbe pabrėžiamas itin svar-
bus didelės skiriamosios gebos duomenų vaidmuo fiksuojant subtilius mažų ir seklių 
vandens telkinių parametrus, kuriuos anksčiau tiksliai stebėti buvo sudėtinga. 

Tyrimas išplečia mokslinę diskusiją apie nuotolinio stebėjimo metodikas ir pa-
tvirtina kvazianalitinio algoritmo (Lee et al., 2015), pritaikyto naudoti bepiločius or-
laivius, veiksmingumą. Ši metodika pabrėžia algoritmo tikslumą vertinant vandens 
skaidrumą – svarbų parametrą vandens kokybės tyrimuose.

Atsižvelgiant į ekologines problemas, susijusias su vandens augalija, tyrimas pade-
da geriau suprasti nendrių augimo tendencijas ir pasiskirstymo pokyčius, susijusius su 
antropogeninėmis intervencijomis, pavyzdžiui, šienavimu. Šiame moksliniame darbe 
taip pat svarbus automatinio slenksčio nustatymo algoritmų tyrimas, atskleidžiantis, 
kad šie algoritmai veiksmingai atskiria vandens ir pakrančių augalijos teritorijas. Nors 
paplūdimio sąnašų pasiskirstymas nėra tiesioginis vandens kokybės rodiklis, tyrime 
jo reikšmė nustatyta vertinant pakrančių ekosistemų būklę ir siūloma metodologiškai 
patobulinti jo stebėseną. Be to, tyrimas pagilina mokslines žinias, kadangi atskleidžia 
U-Net konvoliucinio neuroninio tinklo gebėjimą pagerinti dronų vaizdų klasifikavi-
mo tikslumą. Ši išvada patvirtina vis didėjančią dirbtinio intelekto ir aplinkosaugos 
mokslo sinergiją, sudarančią sąlygas naudoti sudėtingesnes analitines priemones nuo-
tolinio stebėjimo tyrimuose.

Sukurtus vandens kokybės vertinimo metodus gali naudoti aplinkosaugos atstovai 
ir teisės aktų kūrėjai, stebėdami vandens telkinius ir priimdami pagrįstus sprendimus, 
kurie padėtų sukurti veiksmingesnes ir tvaresnes valdymo strategijas. Išvados, susi-
jusios su nendrių plotų ataugimu po šienavimo, gali būti panaudotos valdymo inter-
vencijoms, skirtoms kontroliuoti šią augmeniją ten, kur ji laikoma invazine. Be to, 
įrodyta, kad bepiločių orlaivių daugiaspektrinių vaizdų taikymas matuojant vandens 
skaidrumą yra ekonomiškai efektyvus ir veiksmingas didelio masto vandens kokybės 
stebėsenos metodas, naudingas regionuose, kuriuose atlikti matavimus in situ yra su-
dėtinga arba tam reikia daug išteklių. Galiausiai, galimybė sudaryti paplūdimio sąna-
šų žemėlapį ir įvertinti paplūdimio sąnašų kiekį naudojant drono vaizdus ir mašininį 
mokymąsi gali padėti paplūdimių valdymui, potencialiai informuojant apie valymo 
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poreikį, mikroplastiko taršos mažinimą ir net išteklių panaudojimą, pavyzdžiui, tręši-
mui. Visos šios taikomosios programos gali prisidėti prie vandens ekosistemų išsau-
gojimo ir geresnės sveikatos.

METODAI

Tyrimų vietos

Tyrimai atlikti trijose skirtingose Lietuvos vandens aplinkose: Platelių ežere (ma-
krofitų aptikimas ir šienavimo zonos vertinimas), keturiuose pajūrio paplūdimiuose: 
Melnragės, Karklės, Palangos ir Šventosios (paplūdimio sąnašų tyrimas), 42 ežeruose 
ir tvenkiniuose (Secchi gylio  vertinimas naudojant bepiločių orlaivių daugiaspektri-
nius vaizdus). Platelių ežeras, kurio plotas yra 1200 ha, o vidutinis gylis – 10,5 m, 
pasirinktas dėl gerai ištirtos makrofitų bendrijos ir ežero valymo valdymo strategijos, 
todėl šis ežeras buvo naudinga bandomoji aplinka įvertinti makrofitų aptikimo meto-
dus naudojant Sentinel-2 palydovines nuotraukas ir bepiločių orlaivių vaizdus. Plate-
lių ežeras yra Žemaitijos nacionalinio parko dalis, klasifikuojamas kaip oligomezo-
trofinis ežeras, kurio pakrantėje netolygiai išsidėstę paprastųjų nendrių (Phragmites 
australis) sąžalynai. Tyrime daugiausia dėmesio skirta aštuonioms ežero zonoms: 
septynioms šienaujamoms teritorijoms ir vienai nešienaujamai teritorijai kaip ats-
kaitos taškui. 42 vandens telkiniai Secchi gylio vertinimui pasirinkti atsižvelgus į jų 
dydį, augmenijos ir vandens komponentų įvairovę, pavyzdžiui, drumstumą, chlorofilą 
a ir spalvotas ištirpusias organines medžiagas, atspindinčią Lietuvos vandens telkinių 
aplinką. Nuo 2021 m. balandžio mėn. iki 2022 m. gegužės mėn. atlikta paplūdimio 
sąnašų stebėsena atrinktuose paplūdimiuose dėl jų išskirtinių savybių, pavyzdžiui, 
miesto artumo, laivybos, turizmo veiklos ir pakrantės geografijos, įskaitant kopas, 
skardžius ir klifus. Paplūdimio sąnašų sudėtį Lietuvos Baltijos jūros pakrantėje dau-
giausia sudaro daugiamečiai raudonieji makrodumbliai (85 %), likusią dalį – siūliniai 
žalieji ir rudieji makrodumbliai. Raudonųjų makrodumblių rūšys veši akmenuotame 
dugne, esančiame 3–16 m gylyje, siūliniai žalieji makrodumbliai aptinkami seklumo-
je, o rudieji makrodumbliai – didesniame gylyje ir kietesniame dugne.

duomenų rinkimas

Šiame skyriuje aprašomi nuotolinio stebėjimo metodai, taikyti tyrimuose, kuriuo-
se integruoti in situ matavimai, bepiločių orlaivių vaizdai ir palydoviniai duomenys. 
Kiekviena sudedamoji dalis atlieka svarbų vaidmenį: in situ matavimai suteikia tiks-
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liausius duomenis, bepiločiai orlaiviai suteikia didelės skiriamosios gebos erdvinę in-
formaciją, o Žemės stebėjimo palydovai užtikrina plačią laiko ir erdvės aprėptį. Šių 
metodų integracija patobulina aplinkos vertinimų erdvinę ir laiko raišką bei pagerina 
išvadų pagrįstumą.

Bepiločių orlaivių duomenų gavimo metodų aprašymai (I publikacija) pradedami 
įžvalgomis, gautomis vykdant COST veiklos projektą HARMONIOUS, kurio metu 
daugiausia dėmesio buvo skirta bepiločių orlaivių metodų, padedančių atlikti žemės 
ūkio ir gamtinių ekosistemų stebėseną, suderinimui. Ekspertai nustatė bendrus bepi-
ločiais orlaiviais atliekamų augalijos tyrimų parametrus, pabrėždami augalijos hetero-
geniškumo supratimo, tyrimo metodikų ir duomenų apdorojimo būdų svarbą.

Siekiant validuoti duomenis (II–IV publikacijos) ir išanalizuoti gautas ortofoto-
grafines nuotraukas, vaizdams fiksuoti buvo naudojami bepiločiai orlaiviai su didelės 
skiriamosios gebos kameromis. Kiekviename tyrime skyrėsi bepiločių orlaivių ir ka-
merų tipai, skrydžio protokolai (aukštis, vaizdų dažnis, persidengimas) ir programinė 
įranga, tačiau visuose tyrimuose ortofotografijoms kurti buvo naudotas algoritmas 
„Struktūra iš judesio“ (angl. Structure from Motion). Pjovimo poveikio (II publika-
cija) tyrime daugiausia dėmesio skirta nendrių sąžalynų kartografavimui naudojant 
DJI Phantom 4 su 20 megapikselių RGB kamera, skirta gauti detalias ortofotografi-
nes nuotraukas, kurios buvo lygintos su S2/MSI duomenimis naudojant antžeminius 
kontrolinius taškus tikslumui užtikrinti. III publikacijoje analizuotas erdvinis Secchi 
gylio pasiskirstymas ir tam naudota „DJI Inspire 2“ su „RedEdge-MX“ kamera, fik-
suojančia penkias spektrines juostas 60 m aukštyje. Šiame tyrime ortofotografinių 
nuotraukų rezoliucija buvo apie 3 cm. Paplūdimio sąnašų tyrime (IV publikacija) ste-
bėjimų skrydžiai atlikti kas 10 dienų atsižvelgus į optimalias sąlygas ir ES reglamentų 
laikymąsi. Naudojant daugiaspektrines ir RGB kameras buvo sukurtos mozaikos U-
Net modeliavimui ir skaitmeniniai aukščio modeliai, apimantys įvairius paplūdimių 
ilgius. Šios nuotraukos vėliau susietos su Lietuvos ortofotografiniu žemėlapiu, kad 
būtų galima tiksliai apskaičiuoti paplūdimio sąnašų kiekius. Kameros buvo parinktos 
atsižvelgus į jų veiksmingumą kuriant mozaikas ir reljefo modelius.

Šiame tyrime naudoti Sentinel-2A ir Sentinel-2B (S2/MSI) palydovų duomenys, 
kurių erdvinė skiriamoji geba yra 10 m, 20 m arba 60 m priklausomai nuo spektro 
juostos, kurių yra  12, ir apima  regimosios, artimosios infraraudonosios (NIR) ir 
trumposios infraraudonosios (SWIR) spinduliuotės bangų ilgio diapazonus. Viena 
palydovo nuotrauka Platelių ežere gaunama kas tris dienas. Siekiant užtikrinti duo-
menų kokybę, analizuota šešiolika S2/MSI vaizdų, atrinktų taip, kad jie sutaptų su 
nendrių šienavimo laikotarpiu nuo liepos 20 d. iki rugsėjo 10 d., taip pat atsižvelgta į 
debesuotumą. Dėl neišvengiamų debesų šešėlių tam tikrose teritorijose teko parinkti 
alternatyvius palydovo vaizdus. Tyrime daugiausia naudoti antrojo (2A) lygio duome-
nys, apdoroti „Sen2Cor“ atmosferos korekcijos algoritmu, gauti iš „Copernicus Open 
Access Hub“ portalo.
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Vandens skaidrumo (III publikacija) ir paplūdimio sąnašų (IV publikacija) aukščio 
matavimai atlikti kartu su bepiločiais orlaiviais. Naudojant 20 cm baltąjį Secchi diską 
buvo išmatuotas Secchi gylis ir kartu surinkti vandens ėminiai, kuriuose laboratorijoje 
buvo išmatuotos spalvotųjų ištirpusių organinių medžiagų (CDOM) ir chlorofilo a 
(Chl-a) koncentracijos, nustatytas drumstumas. Šis tyrimas buvo vykdomas 2021–
2022 m. gegužės–rugsėjo mėn. Iš viso surinkta 43 in situ Secchi gylio matavimų ir 
bepiločių orlaivių vaizdų duomenų, kuriuose Chl-a koncentracija nustatyta spektro-
fotometriškai, CDOM išmatuota atliekant spektrofotometrinę analizę, o drumstumas 
kiekybiškai nustatytas naudojant drumstumo matuoklį. Nuotolinio stebėjimo atspin-
džio rodiklis (Rrs) buvo gautas naudojant WISP-3 spektroradiometrą, kurio duomenys 
skirti validuoti iš bepiločio orlaivio gautus vandens atspindžius. 

Atliekant paplūdimio sąnašų aukščio vertinimą kartu su bepiločių orlaivių skry-
džiais buvo įvykdyta 16 lauko misijų, kurių metu paplūdimio sąnašų aukštis išma-
tuotas kas 10 m išilgai transektinių linijų. Šie aukščių duomenys panaudoti bepiločių 
orlaivių paplūdimio sąnašų aukščio vertinimo patvirtinimui.

vaizdų apdorojimas

Nendrių sąžalynai (II publikacija) apibrėžti rankiniu būdu iš bepiločių orlaivių or-
tofotografijų, o nendrių tankis vizualiai įvertintas naudojant 10 m² dydžio poligonus, 
atitinkančius S2/MSI pikselio dydį. Pakrantės riba apibrėžta naudojant geoportal.lt 
ežerų poligonų žemėlapį neįtraukiant salų, taip pat aplink pakrantę nustatyta 10 m 
buferinė zona, kad būtų galima atskirti medžius ir kranto augaliją nuo nendrių. Sie-
kiant supaprastinti vaizdų apdorojimą, S2/MSI vaizdai pergrupuoti iki vienodos 10 m 
erdvinės skiriamosios gebos.

Tyrime daugiausia dėmesio skirta dvinarės klasifikacijos metodų taikymui kla-
sifikuoti indeksus ir įvertinti nendrynų plotų pokyčius. Pagrindiniai klasifikavimui 
naudoti indeksai buvo vandens augalijos indeksas (angl. Water Adjusted Vegetation 
Index, WAVI) ir normalizuotas vandens skirtumo indeksas (angl. Normalized Diffe-
rence Water Index, NDWI). Klasifikavimui naudoti septyni dvinariai slenksčio nusta-
tymo algoritmai iš „Fiji“ programinės įrangos.

Siekiant įvertinti Secchi gylį šiame tyrime (III publikacija) buvo testuotas kvazia-
nalitinis algoritmas, sukurtas Lee ir kt. (2015). Šis pusiau analitinis metodas išsiskiria 
tuo, kad jam nereikalingas in situ kalibravimas. Tai yra reikšminga pažanga palyginus 
su tradiciniais empiriniais metodais. Šiame algoritme svarbiausi yra suminės absorb-
cijos (a) ir grįžtamosios sklaidos koeficientai (bb), iš kurių išvestas difuzinio susil-
pnėjimo koeficientas (Kd). Metodo tikslumas padidintas atsižvelgus į saulės zenito 
kampą ir parinkus vandens telkinio charakteristikoms tinkamus bangų ilgius. Pirmi-
niam bepiločių orlaivio vaizdų apdorojimui pritaikytas saulės atspindžio koregavimas 
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ir maskavimas bei netinkamų vandens telkinių pašalinimas (nuotraukose matomas 
dugnas), po kurio galutinėje analizėje liko 39 vandens telkiniai. Vandens ir ne vandens 
pikseliams atskirti buvo taikomas normalizuotas vandens skirtumo indeksas, o sau-
lės atspindžio korekcijos algoritmų tikslumas patikrintas pasitelkiant anksčiau minėto 
WISP-3 duomenis.

U-Net modelio treniravimui (IV publikacija) naudoti didelės skiriamosios gebos 
bepiločio orlaivio vaizdai buvo padalinti į 163 mažesnes dalis, iš kurių treniravimui 
pasirinkta 17. Modeliai buvo apmokyti naudojant šešis skirtingus duomenų derinius, 
į kuriuos įtraukti daugiaspektriniai, RGB, indeksų kombinacijos (NDVI, NDWI ir 
NDRE) bei aukščio duomenys. Duomenų kombinacijos apdorotos pasitelkus GDAL 
3.4.3. Siekiant ištirti erdvinės vietos paklaidą, viename duomenų rinkinyje, apiman-
čiame visas spektrines juostas ir aukščius, atliktas duomenų papildymas, t. y. atsitik-
tinis pasukimas ir apvertimas.

Norint tiksliai nustatyti paplūdimio sąnašų aukštį naudojant bepiločio orlaivio 
duomenis iš skaitmeninio auščių modelio buvo atimtas skaitmeninis paviršiaus mode-
lis. Siekiant optimizuoti U-Net architektūros, pritaikytos daugiaspektriams vaizdams, 
mokymąsi, naudotas ankstyvas sustabdymas ir Dice (angl. Dice loss) bei centrinio 
nuostolio (angl. focal loss) funkcijų derinys.

U-Net modelio mokymo ženklinimas atliktas taikant prižiūrimą mašininio moky-
mosi metodą ir rankinį taisymą, daugiausia dėmesio skiriant paplūdimio sąnašų atsky-
rimui nuo kitų objektų (potencialių sąnašų, smėlio, vandens ir kitų). Daugiaspektriniai 
vaizdai buvo paruošti TIFF formatu, kad juos būtų galima žymėti, o artimoji infrarau-
donųjų spindulių juosta padėjo atskirti makrodumblius, kuriuos sunku identifikuo-
ti RGB vaizduose. Vaizdų segmentavimo darbo eigoje buvo naudojami paženklinti 
TIFF failai ir „Python“ paketas „Smoothly-Blend-Image-Patches“, skirtas sumažinti 
vaizduose esančius kraštų iškraipymo efektus.

Statistiniai metodai ir validacija

Atliekant statistinę analizę tradiciniai metodai buvo integruoti kartu su erdvinių 
vaizdų segmentavimu ir klasifikavimu. Daugiausia dėmesio skirta augmenijos ir van-
dens atskyrimui naudojant bepiločių orlaivių ortofotografines nuotraukas ir palydo-
vinius duomenis. Nendrių sąžalynų (II publikacija) plotų klasifikacijai pasirinktas 
konkretus indeksas ir slenkstis, patvirtintas su 12 bepiločiais orlaiviais atliktų ortofo-
tonuotraukų, o jų tikslumas įvertintas naudojant painiavos matricą (angl. Confusion 
matrix) ir plotą po kreive (angl. Area under the curve, AUC). Slenksčių nustatymo 
algoritmai, kurie naudojami maskuoti vandenį ir palikti augmeniją bei kurių jautrumo 
ir specifiškumo reikšmės buvo 0,5 arba didesnės, buvo laikomi tinkamais, o tai reiš-
kia, kad teisingai suklasifikuota 50 % duomenų. Statistiniai testai, įskaitant t testus 
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(angl. t-test) ir Dunnett’o post hoc testą, buvo taikomi siekiant palyginti vidutines 
AUC vertes tarp skirtingų algoritmų ir augmenijos tankumų. Nendrių sąžalynų tankis 
apskaičiuotas naudojant Sentinel-2/MSI duomenis ir patikrintas su bepiločiais orlai-
viais atliktomis ortofotografijomis pritaikius tiesinę regresiją.

Siekiant nustatyti Secchi gylio tikslumą (III publikacija) naudojant apibendrintus 
sudėtinius modelius (angl. Generalized Additive Models, GAM) analizuotas ryšys tarp 
modeliuojamų ir in situ Secchi gylio verčių bei aplinkos veiksnių naudojant R progra-
mos statistinius ir vizualizavimo paketus. Modelio tikslumas vertintas naudojant nuo-
krypį, vidutinį kvadratinį nuokrypį (RMSD) ir Pearsono koreliacijos koeficientą.

Paplūdimio sąnašų modelio (IV publikacija) veikimas buvo vertinamas duomenis 
suskirsčius į mokymo ir rezultatų patvirtinimo rinkinius naudojant tikslumo (angl. 
precision), atšaukimo (angl. recall), F1 rezultato (angl. F1 score) ir intersekcijos są-
jungoje (angl. Intersection over Union, IoU) metrikas.

Naudojant statistinius testus, įskaitant Dunnett’o testą ir vienpusę ANOVA, „Python“ 
paketus ir 0,05 reikšmingumo lygį, buvo lyginamos IoU vertės tarp skirtingų tiriamų-
jų paplūdimių. In situ išmatuoti aukščiai buvo koreliuojami su bepiločio orlaivio nu-
statytais aukščiais kiekybiškai vertinant vidutines kvadratines paklaidas (angl. Root 
mean square error, RMSE) ir vidutinę absoliučiąją paklaidą (angl. Mean absolute error, 
MAE). Galiausiai prognozavimo tikslumas buvo lyginamas naudojant vidutinį absoliu-
tų procentinį nuokrypį (angl. Mean absolute percentage error, MAPD) ir RMSD.

REZULTATAI IR APTARIMAS

Kiekvienas iš šių tyrimų prisideda prie išsamesnio supratimo apie vandens ko-
kybės vertinimą naudojant nuotolinius stebėjimus. I publikacijoje aprašomas bepilo-
čių orlaivių naudojimas augmenijos stebėsenai. II tyrime stebimi vandens augalijos 
pokyčiai, kurie yra svarbūs vandens kokybės rodikliams. III tyrime stebimas ežerų 
vandens skaidrumas – pagrindinis vandens kokybės parametras. IV tyrime nuotolinis 
stebėjimas taikomas pakrančių zonose sudarant paplūdimio sąnašų, kurios tikėtina 
gali įtakoti vandens kokybę, pasiskirstymo žemėlapius. Šie darbai rodo, kad nuotoli-
nis stebėjimas gali būti taikomas kartu su tradiciniais metodais, siekiant visapusiškai 
stebėti vandens kokybę vandens aplinkoje.

Bendrosios rekomendacijos dėl augalijos stebėsenos naudojant 
bepilotes skraidykles

Šio straipsnio autoriai pateikia pagal tyrimų tikslus ir augalijos savybes pritaiky-
tas rekomendacijas dėl bepiločių orlaivių taikymo augalijos tyrimams. Pagrindinis 
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pasiūlymas yra naudoti didelės spektrinės skiriamosios gebos ir pažangius vaizdų ap-
dorojimo metodus, skirtus identifikuoti ir atskirti augalų rūšis. Vertinant ekosistemų 
struktūrą, rekomenduojama naudoti LiDAR ir didelės skiriamosios gebos fotograme-
trinius jutiklius, kad būtų galima tiksliai įvertinti stiebų tūrį ir sudėtingumą. Tyrime 
pabrėžiama hiperspektrinių ir terminių vaizdų nauda vertinant augalų būklę, įskai-
tant fenologiją ir streso lygį. Norint nustatyti ekosistemų dinamiką rekomenduojama 
dažnai atlikti tyrimus naudojant bepiločius orlaivius. Šiomis gairėmis, pagrįstomis 
išsamia literatūros apžvalga, siekiama optimizuoti bepiločių orlaivių taikymą atlie-
kant ekologinius vertinimus. Remiantis šiomis įžvalgomis sukurta interaktyvi darbo 
eigos diagrama, kurią galima rasti COST Harmonious interneto svetainėje (https://
www.costh armonious.eu/characterizing-vegetation-complexity-with-uas). Diagrama 
padeda pasirinkti bepiločių orlaivių atliekamų augalijos tyrimų metodus. Šie tyrimai 
padeda aplinkosaugos mokslininkams ir ekologams vykdyti augalijos stebėseną ir 
valdymą naudojant bepiločius orlaivius ir taip prisidėti prie išsamaus ekologinių pa-
rametrų vertinimo įvairiose aplinkose. Atliekant augalijos stebėseną bepiločiais orlai-
viais buvo išskirtos keturios būdingos savybės, kurios bus aprašytos išsamiau.

Augalijos rūšinė sudėtis, kuriai įtakos turi erdvinis ir laikinis heterogeniškumas, įvai-
riose biogeografinėse zonose ir biomuose skiriasi (Lambers ir Oliveira, 2019; Pugnaire 
ir Valladares, 1999). Bepiločių orlaivių taikymas šioje srityje įrodė, kad buveinių kar-
tografavimas ir stebėsena išsaugojimo tikslais yra veiksminga, o šiuos metodologinius 
pasirinkimus lemia tikslinės rūšys arba augmenijos savybės (Müllerová, 2019). Norint 
atskirti rūšis, pasižyminčias minimaliais spektriniais ir struktūriniais skirtumais, reika-
linga didelė duomenų skiriamoji geba ir sudėtingi algoritmai. Taip pat norint atskir-
ti šią augaliją nuo aplinkos ar kitų augalų reikalinga formos, tekstūros ir kontekstinė 
informacija, kuri pagerintų identifikavimo tikslumą, kai naudojamos nebrangios RGB 
kameros (Franklin, 2018; Gini ir kt., 2014; Pande-Chhetri ir kt., 2017; Yuba ir kt., 2021). 
Atliekant sudėtingos augmenijos analizę itin svarbus detalesnės spektrinės, erdvinės ir 
laiko skiriamos gebos duomenų bei pažangių metodų, įskaitant objektais paremtą vaiz-
dų analizę (angl. Object based image analysis), mašininį mokymąsi ir gilųjį mokymąsi, 
derinys (Kattenborn et al., 2020; Martin et al., 2018).

Ekosistemos struktūrai, kuri yra pagrindinis išteklių kintamumą lemiantis veiks-
nys, reikalinga išsami informacija apie lapų ir stiebų struktūrą, tarpus tarp individua-
lių augalų ir jų erdvinį pasiskirstymą (Bagaram et al., 2018; Getzin et al., 2012; Kent 
et al., 2015). Dauguma bepiločių orlaivių tyrimų daugiausia dėmesio skiria miškams 
naudojant 3D duomenis iš įvairių jutiklių, kad būtų galima analizuoti stiebų sudėtin-
gumą ir kiekybiškai įvertinti biomasę (Cunliffe et al., 2016; Swetnam et al., 2018; 
Meneses et al., 2018). LiDAR jutiklių naudojimas yra labai svarbus kuriant skaitme-
ninius reljefo modelius (angl. Digital terrain model, DTM) ir vertinant struktūrinius 
sluoksnius tankiuose augalijos plotuose (Aguilar et al., 2019; Camarreta et al., 2020; 
Giannetti et al., 2018; Kašpar et al., 2021). Fotogrametriniai taškų debesys yra eko-
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nomiškai efektyvi alternatyva mažiau tankiai augalijai, tačiau vizualiai sudėtingoje 
aplinkoje išlieka nemažai iššūkių (Baltsavias et al., 2008; Dandois and Ellis, 2010; 
White et al., 2015; Westoby et al., 2012; Seifert et al., 2019). Duomenų šaltinių derini-
mas, pavyzdžiui, spektrinių savybių įtraukimas į LiDAR ir tikslus skirtingų duomenų 
rinkinių koordinačių pririšimas, gali pagerinti struktūrinę analizę (Lisein et al., 2013; 
Wallace et al., 2016).

Bepiločiai orlaiviai, pasižymintys didele erdvine ir laikine skiriamąja geba, yra 
svarbūs tiriant augalų fenologiją ir reakciją į stresą. Nors daug tyrimų atliekama že-
mės ūkio ir miškininkystės kontekste, rūšių gausumo tyrimai yra riboti (D’Odorico et 
al., 2020; zarco-Tejada et al., 2012). Norint iš anksto nustatyti spektrines savybes ir 
streso rodiklius, reikalingi sudėtingi jutikliai ir kompleksiniai modeliai, kurie naudo-
jami pritaikant šiluminius vaizdus ir energijos balanso modelius (Jones ir Vaughan, 
2010; Gago ir kt., 2017). Bepiločiai orlaiviai padeda išsamiai stebėti fenologinius 
etapus, suteikdami lankstumo laiku gauti didelės skiriamosios gebos duomenis (Carl 
et al., 2017; Fawcett et al., 2021).

Bepiločiai orlaiviai padeda tirti dinamiškus natūralius procesus, įskaitant vandens 
augalų sudėtį, ekosistemų struktūrą ir augalų būklę, pakartotinių matavimų metu tai-
kant pokyčių aptikimo metodą (Berra et al., 2019; Fawcett et al., 2021; Park et al., 
2019; Laslier et al., 2019; Michez et al., 2016). Bepiločių orlaivių lankstumas yra itin 
svarbus reaguojant į dramatiškus įvykius, pavyzdžiui, potvynius ar didelius vandens 
kokybės pokyčius, kadangi palengvina greitą duomenų rinkimą ir sumažina lauko 
tyrimų riziką (Novković et al., 2023). Bepiločiai orlaiviai padeda suprasti ir iš anksto 
aptikti vandens ekosistemų trikdžius naudojant įvairius jutiklius – nuo pažangių hi-
perspektrinių iki paprastų RGB kamerų, o palydovinių duomenų integracija pagerina 
didelės teritorijos stebėseną ir valdymą (Novković et al., 2023; Song & Park, 2020; 
Chabot et al., 2017).

Nendrių sąžalynų dinamikos analizė iš bepiločių orlaivių ir 
palydovų vaizdų Platelių ežere

automatinės darbo eigos ir palydovinių vaizdų analizės 
veiksmingumas

Žemės stebėjimo duomenų naudą riboja didelės skiriamosios gebos patvirtinimo 
duomenų trūkumas, todėl norint padidinti palydovinių stebėjimų tikslumą reikia tai-
kyti papildomus antžeminio tikrinimo metodus (Ozesmi ir Bauer, 2002). Bepiločių 
orlaivių duomenų integravimas kompensuoja Žemės stebėjimo skiriamosios gebos 
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apribojimus, pavyzdžiui, bepiločių orlaivių duomenys, turintys didesnę skiriamąją 
gebą ir lankstumą, gali būti veiksminga Žemės stebėjimo palydovų nustatytų ma-
krofitų plotų patvirtinimo priemonė, pagerinanti bendrą augalijos analizės tikslumą 
(Anderson ir Gaston, 2013). Nepaisant apribojimų, Žemės stebėjimo duomenys yra 
vertingi vykdant ilgalaikę ekologinę stebėseną vandens aplinkoje.

Vandens ir augalijos dvinarių atskyrimo slenksčių algoritmų analizė parodė, kad 
tam tikri algoritmai daugiau nei pusė atvejų klaidingai priskyrė vandenį augmenijai, 
o kiti pasižymėjo didesniu specifiškumu. Daugeliu atvejų algoritmai tiksliai atskyrė 
vandenį. Vis dėlto, tokie algoritmai kaip Otsu ir RenyiEntropy pasižymėjo mažu jau-
trumu, todėl jie buvo pašalinti iš tolesnio nagrinėjimo sutelkiant dėmesį į penkis nor-
malizuoto vandens skirtumo indekso algoritmus, pasižyminčius geresniais rodikliais. 
Yen algoritmas veiksmingiausiai atskyrė augmeniją ir vandenį, nepaisant panašių re-
zultatų taikant kitus algoritmus (Oyama ir kt., 2015; Bollas ir kt., 2021). Dėl paste-
bėtų augalijos ploto vertinimo neatitikimų tarp bepiločių orlaivių ortofotonuotraukų 
ir palydovinių vaizdų geresniam aptikimui rekomenduojama naudoti SWIR juostą ir 
modifikuotą normalizuotą vandens skirtumo indeksą (angl. NDWI). Visgi naudojant 
modifikuoto normalizuoto vandens skirtumo indekso duomenis atsiranda klaidingos 
klasifikacijos tikimybė dėl skiriamosios gebos skirtumų, palyginus su spektrais, nau-
dojamais šiame tyrime (Xu, 2005; Jiang et al., 2020).

Šienavimo metais pastebėtas žymus augmenijos ploto sumažėjimas, o šienauja-
muose plotuose šis sumažėjimas buvo didesnis nei nešienautame etaloniniame plo-
te. Norint veiksmingai tvarkyti nendrių plotus labai svarbu nuolat šienauti. Tai įrodo 
2017–2019 m. tvarkymo programos metu sumažėjęs nendrių sąžalynų plotas ir vėles-
nis nendrių ataugimas 2020 m., pabrėžiantis pakartotinio šienavimo būtinybę (Ails-
tock et al., 2001; Asaeda et al., 2006; Derr, 2008).

Poveikis vandens telkinių valdymui ir nendrių sąžalynų tankio 
atsistatymui

Spearman’o koreliacija parodė stiprų ir reikšmingą ryšį tarp WAVI reikšmių ir 
nendrių tankio, todėl WAVI yra patikimas rodiklis, leidžiantis stebėti augalijos tankį 
naudojant bepiločių orlaivių duomenis. Pagal WAVI vertes galima atskirti vandens ir 
nendrių plotus, o tai padeda valdyti augmeniją. Analizuojant augalijos tankio poky-
čius skirtingais metais išryškėjo skirtingas šienavimo poveikis: tam tikrais metais pa-
stebėti reikšmingi skirtumai, tačiau pirmaisiais šienavimo metais ir 2020 m. tikrinimo 
metais pokyčių nebuvo. Tyrimo metu pastebėta, kad natūralus augalijos tankis padi-
dėja vegetacijos sezono pabaigoje. Tai įrodo šienavimo daromą įtaką nendrių augimo 
ciklui. Nepaisant augalijos tankio ir ploto svyravimų, rezultatai rodo, kad nendrių 
sąžalynai laikui bėgant atsinaujina, todėl juos reikia šienauti pakartotinai.
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Nuotolinis stebėjimas papildo tradicinius stebėsenos metodus ir suteikia ekono-
miškai efektyvias plataus masto stebėsenos galimybes. Šis metodas, kartu su paly-
doviniais ir bepiločių orlaivių duomenimis, padeda geriau valdyti ežerų ekosistemas. 
Taip pat šie metodai pateikia išsamią informaciją apie augaliją ir siūlo optimalų šiena-
vimo laiką siekiant išvalyti ežerą nuo maistinių medžiagų pertekliaus.

vandens skaidrumo vertinimas naudojant bepiločio orlaivio vaizdus

Taikant saulės atspindžio korekcijos metodus daugiaspektriniams vaizdams gauti 
nevienareikšmiai rezultatai: žaliosios juostos vidutinė nuokrypio vertė buvo didžiau-
sia, o mėlynosios juostos – mažiausia. Didžiausias multikolinearumas nustatytas tarp 
žaliosios ir raudonosios juostų (r = 0,97). Tai atskleidžia sisteminius ir atsitiktinius 
netikslumus nustatant vandens paviršiaus parametrus. Mėlynosios juostos ryšys buvo 
mažiausiai stabilus dėl jautrumo sklaidai, tad tai turėjo įtakos jos signalo fiksavimui 
vandens aplinkoje. Palyginus korekcijos metodus Lyzenga’os metodas rodė didžiau-
sias vidutines vertes, o Goodman’o – mažiausias, bet su didžiausia koreliacija žalio-
sios ir raudonosios spektrinių juostų atžvilgiu. Remiantis mažu Goodman’o RMSD, 
jis yra tinkamas pritaikymui, kai reikia mažo atspindžio intensyvumo nuokrypio. Įvai-
rių tyrimų metu paaiškėjo, kad korekcijos metodų veiksmingumas skiriasi priklauso-
mai nuo vandens kokybės rodiklių. Taikant korekciją visame vaizde, o ne tik slenks-
tinio algoritmo atskirtose srityse, kur matomas saulės atspindžio, bendras tikslumas 
pranoksta metodą, kai saules atspindžio korekcija taikoma tik tose vietose, kur jis 
yra ryškiausiai matomas. Goodman’o ir Hedley’io metodai buvo veiksmingiausi ko-
reguojant saulės atspindį daugiaspektrinių bepiločių orlaivių vaizdų duomenyse. Tai 
patvirtina jų galimą naudą tolesniuose tyrimuose skaičiuojant vandens parametrus.

Įvertinus kvazianalitinio algoritmo (QAA) modelio, skirto apskaičiuoti Secchi 
gylį, rezultatus nustatyta aukšta koreliacija naudojant visus saulės atspindžio korega-
vimo metodus: r reikšmės svyruoja nuo 0,74 iki 0,92, o RMSD – nuo 0,65 m iki 1,05 
m. Tai rodo, kad rezultatai yra priimtini. Hedley metodo RMSD buvo geriausias (0,65 
m), nors r (0,91) buvo šiek tiek mažesnis palyginus su Goodmano metodu (r = 0,92, 
RMSD = 1,00 m), kuris nepakankamai įvertino SG vertes. Galutiniai rezultatai paro-
dė, kad tiek Hedley tiek Goodmano metodai buvo efektyviausi, tačiau abu metodai 
turėjo savų trūkumų.

Nustatyta, kad vidutinis ežerų in situ Secchi gylis buvo 1,91 m, kuriuose CDOM, 
Chl-a koncentracijos ir drumstumas varijavo. GAM rezultatai atskleidė, kad 38 % 
Secchi gylio dispersijos reikšmingai lėmė šie veiksniai: CDOM kiekis (F = 6,808, p < 
0,05) ir saulės zenito kampas (F = 4,84, p = 0,02), tačiau Chl-a neturėjo reikšmingos 
įtakos (F = 0,295, p = 0,59). Dideli saulės zenito kampai, pavyzdžiui, didesni nei 70 
laipsnių, dėl padidėjusios šviesos sklaidos ir absorbcijos sumažino Secchi gylio mo-
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delio tikslumą iki 1,5 m. Šie rezultatai pabrėžia pažangių algoritmų poreikį siekiant 
tiksliai prognozuoti Secchi gylį (Hashimoto et al., 2019). Stebėjimai patvirtina, kad 
CDOM absorbcija ultravioletiniame ir mėlynajame spektre sumažina jutiklių aptiktus 
signalus, o koreliacija tarp in situ bei bepiločio orlaivio gauto atspindžio mėlynojoje 
juostoje susilpnėja (Warren et al., 2019; Mamaghani ir Salvaggio, 2019). Pažymėta, 
kad Goodman’o ir Hedley’io metodai buvo veiksmingi sprendžiant šias problemas. 
Hedley’io metodas parodė didžiausią koreliacijos koeficientą, o Goodman’o metodas 
pasiekė mažiausią mėlynosios juostos atspindžio RMSD, kur galutiniai atspindžiai iš 
daugiaspektrinės kameros artimai sutampa su in situ vertėmis.

Bepiločiu orlaiviu atliekamas paplūdimio makrodumblių sąnašų 
kiekybinis vertinimas

U-Net modelis didžiausią efektyvumą parodė naudodamas iš indeksų (NDVI, 
NDWI, NDRE) sudarytą duomenų rinkinį, kuris pasiekė F1 balą – 0,86 ir IoU – 0,75. 
Rezultatas rodo, kad šis duomenų rinkinys yra tinkamas semantiniam didelės skiria-
mosios gebos bepiločių orlaivių vaizdų segmentavimui. Mažiausia IoU reikšmė buvo 
nustatyta išskiriant potencialių paplūdimio sąnašų (t.y., sąnašų esančių vandenyje) 
klasę visose naudotose duomenų rinkinių kombinacijose. Tai nulėmė modelių tiks-
lumo variacijas išskiriant skirtingas klases (paplūdimio sąnašos, potencialios paplū-
dimio sąnašos, smėlis, vanduo, kita). Post hoc testai neparodė statistiškai reikšmingų 
duomenų kombinacijų tikslumo skirtumų (p reikšmės ≥ 0,74), todėl atsiranda galimy-
bė modelius panaudoti kitose teritorijose ir kitu laiku.

Paplūdimio sąnašų segmentavimui validavimo duomenims veiksmingiausia 
„RGB“ kombinacija, kurios IoU buvo 0,42, o F1 balas – 0,54. „5 juostų ir aukš-
čio“ kombinacija geriausiai veikė potencialiam paplūdimio sąnašų segmentavimui. 
„RGB“ kombinacija taip pat buvo geriausia atskiriant vandens ir smėlio klases, todėl 
galima teigti, kad bepiločiai orlaiviai yra veiksmingi stebint įvairias paplūdimių cha-
rakteristikas. Vis dėlto perkelti modelį į naujas vietoves su ne tokiais homogeniškais 
paviršiais gali būti sudėtinga, kaip matyti Karklėje, kur aukščio duomenų įtraukimas 
sumažino tikslumą. Anot Taddia et al. (2019), aukščio tikslumą galima pagerinti nau-
dojant papildomus kampu sudarytus vaizdus, dėl kurių galima tiksliau apskaičiuoti 
skaitmeninius aukščio modelius. Modelio veikimas su augmentuotų duomenų kombi-
nacija rodo, kad jį galima pritaikyti įvairiuose scenarijuose be erdvinės lokalizacijos 
šališkumo. Dėl vidutinio tikslumo ir mažesnių skaičiavimo reikalavimų „RGB“ kom-
binacija yra tinkamesnė paplūdimio sąnašų segmentavimui.

Potencialių paplūdimio sąnašų aptikimo iššūkių kyla dėl sudėtingų vandens aplin-
kos optinių savybių, nes vanduo keičia šviesos sugėrimą ir atspindėjimą skirtinguose 
gyliuose. Tai turi įtakos veiksmingai aptikti paplūdimio sąnašas automatiniu būdu. 
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Sprendžiant šias problemas gali prireikti papildomų išankstinio apdorojimo etapų, 
kad būtų pakoreguoti nukrypimai nuotraukose dėl tokių veiksnių, kaip vandens gylis 
ar saulės atspindys.

Tyrimo metu kiekybiškai nustatyti paplūdimio sąnašų plotai svyravo nuo 236 m² iki 
11193 m², o pagal U-Net modelį naudojant „RGB“ duomenų kombinaciją nustatyti pa-
plūdimio sąnašų plotai svyravo nuo 9 m² iki 3710 m². Vidutinis rankiniu būdu nustatytas 
plotas buvo 1888 ± 2199 m², palyginus su U-Net modelio apskaičiuotu 1218 ± 940 m² 
plotu su tiesinės dispersijos priklausomybe. „RGB“ kombinacija pasiekė didžiausią ko-
reliacijos koeficientą (r = 0,87) ir mažiausias paklaidas (MAE 562 ir RMSE 783).

Koreliacija tarp modeliuotų ir in situ išmatuotų aukščių buvo reikšminga p < 0,05 
su r = 0,44, tačiau pasitelkus bepiločius orlaivius apskaičiuotas paplūdimio sąnašų 
aukštis, palyginus su in situ matavimais, buvo penkis kartus didesnis, todėl siūloma 
atsargiai naudoti šiuos aukščio nustatymo metodus. Ateityje tikslumą būtų galima pa-
didinti fotografuojant ne tik kamerą nukreipus į apačią, bet ir pakreipus kampu, kad 
būtų galima geriau apskaičiuoti skaitmeninius aukščio modelius (Taddia et al., 2019).

Atlikus vizualinę analizę paaiškėjo, kad modelis daugumą paplūdimio sąnašų 
plotų klasifikavo gerai, tačiau tam tikrose srityse buvo pastebėta neatitikimų. NIR 
duomenys leido aiškiau atskirti paplūdimio sąnašas nuo aplinkos nei vien tik RGB 
duomenys. Netinkamas klasifikavimas akivaizdesnis vandens klasėse esant sudėtin-
goms sąlygoms, pavyzdžiui, esant banguotam vandens paviršiui ar saulės atspindžio 
paveiktoms ortofotonuotraukoms.

Vienos nuotraukos klasifikavimas trunka apie 5 minutes, todėl pasitelkus šį me-
todą paplūdimių stebėsenai galima juos greitai įvertinti, o ekonomiškai efektyvią ir 
veiksmingą darbo eigą galima pritaikyti įvairiems paplūdimių tipams. Ateityje moks-
linius tyrimus reikėtų atlikti įvairesnėmis morfologėmis sąlygomis, kad būtų galima 
padidinti modelio pritaikomumą ir tikslumą įtraukiant pažangius išankstinio apdo-
rojimo metodus, pavyzdžiui, saulės atspindžio pašalinimą ir radiometrinę korekciją.

IŠVADOS

1. Sukurta bepiločių orlaivių tyrimų sistema, parodanti, kaip įvairi duomenų ski-
riamoji geba, jutiklių integracija ir pažangūs analitiniai metodai padeda kar-
tografuoti keturis nustatytus augalijos parametrus, bei pabrėžianti šių metodų 
veiksmingumą biologinės įvairovės išsaugojimo, ekosistemų struktūros anali-
zės, fenologijos ir streso stebėsenos srityse. Ši sistema aplinkosaugos moks-
lininkams ir išteklių valdytojams suteikia išsamią metodiką, kaip panaudoti 
bepiločių orlaivių nuotolinį stebėjimą, kad būtų galima stebėti ir tvarkyti au-
gmeniją įvairiose aplinkose.
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2. Nendrių sąžalynų pokyčiai, atsiradę dėl šienavimo, veiksmingai nustatyti nau-
dojant Yen dvinarį slenksčio nustatymo algoritmą pagal normalizuotą vandens 
skirtumo indeksą, gautą iš Sentinel-2/MSI duomenų, todėl šis metodas yra pa-
tikimas stebėti ir valdyti nendrių sąžalynų dinamiką Platelių ežere. Reikšmin-
gas aptikimo tikslumas buvo didesnis tankesniems (50 %) nendrių sąžalynų 
plotams, kurių dydis ≥ 0,1 ha.

3. Patvirtintas daugiaspektrinių bepiločių orlaivių jutiklių duomenų naudojimo 
su kvazianalitiniu algoritmu potencialas vertinant Secchi gylį vandens telki-
niuose. Bepiločių orlaivių skrydžių metu atliktų Secchi gylio matavimų tikslu-
mui didelę įtaką darė saulės atspindžio korekcijos metodai, iš kurių Hedley’io 
metodas buvo tiksliausias.

4. U-Net modelio nauda paplūdimio sąnašų segmentavimui buvo ypač veiksmin-
ga pritaikant „RGB“ duomenų kombinaciją. Modelio veikimas paplūdimiuose 
su skirtingomis geomorfologinėmis savybėmis (pvz. smėlėtas arba akmenuo-
tas paplūdimys) skyrėsi, o tai rodo, kad, siekiant modelį panaudoti naujose te-
ritorijose ir norint, kad jis veiktų tiksliau, modelį reikia sukalibruoti pridedant 
naujų vaizdų. Daugiaspektrinių ir aukščio duomenų integravimas reikšmingai 
nepadidino tikslumo, palyginus su paprastesne „RGB“ kombinacija.
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A B S T R A C T   

Ecosystem complexity is among the important drivers of biodiversity and ecosystem functioning, and unmanned 
aerial systems (UASs) are becoming an important tool for characterizing vegetation patterns and processes. The 
variety of UASs applications is immense, and so are the procedures to process UASs data described in the 
literature. Optimizing the workflow is still a matter of discussion. Here, we present a comprehensive synthesis 
aiming to identify common rules that shape workflows applied in UAS-based studies facing complexity in eco-
systems. Analysing the studies, we found similarities irrespective of the ecosystem, according to the character of 
the property addressed, such as species composition (biodiversity), ecosystem structure (stand volume/ 
complexity), plant status (phenology and stress levels), and dynamics (disturbances and regeneration). We 
propose a general framework allowing to design UAS-based vegetation surveys according to its purpose and the 
component of ecosystem complexity addressed. We support the framework by detailed schemes as well as ex-
amples of best practices of UAS studies covering each of the vegetation properties (i.e. composition, structure, 
status and dynamics) and related applications. For an efficient UAS survey, the following points are crucial: 
knowledge of the phenomenon, choice of platform, sensor, resolution (temporal, spatial and spectral), model and 
classification algorithm according to the phenomenon, as well as careful interpretation of the results. The simpler 
the procedure, the more robust, repeatable, applicable and cost effective it is. Therefore, the proper design can 
minimize the efforts while maximizing the quality of the results.   

1. Introduction 

There are considerable gaps between field-based and remote sensing- 
based approaches as the field variables differ from those assessed by 
remote sensing techniques. Thanks to a very fine resolution, unmanned 

aerial systems (UASs), also called unmanned aerial vehicles (UAVs), 
remotely piloted aerial systems (RPASs) and informally drones, can help 
to upscale the point or plot field measurements into the landscape scale, 
and potentially to larger areas bridging the gap between field surveys 
and satellite data (Alvarez-Vanhard et al., 2020). UASs are increasingly 
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used in the last decade, becoming an important tool for characterizing 
different aspects/components of vegetation in many ecosystems 
worldwide. The tool is ideal for both research experiments and targeted 
operational use; e.g., in nature protection (Gonzalez et al., 2016; 
Jiménez López and Mulero-Pázmány, 2019; Müllerová et al., 2017a). A 
wide choice of aircraft types (different types of copters or fixed-wings), 
sensors (multispectral, hyperspectral, Light Detection and Ranging - 
LiDAR), procedures and algorithms are available for the acquisition as 
well as the processing and interpretation of data (Colomina and Molina, 
2014; Fig. 1). UAS surveys can thus be customized and designed for a 
variety of applications (Yao et al., 2019). In order to maximize the 
benefits of UAS, it is crucial to choose appropriate system settings, 
design of the field campaign, preprocessing of the data and the algo-
rithms (Tmušić et al., 2020). Considering the research purpose and 
characteristics of the studied ecosystem shows to be likewise important. 

Within vegetation studies, UAS tool is being used for a large variety 
of purposes, including mapping current vegetation state, studying pro-
cesses at the level of ecosystem, community and individual, assessing 
and modelling the plant growth, monitoring and evaluating effects of 
human disturbances and natural disasters such as wildfires, torrential 
floods and insect outbreaks (Anderson and Gaston, 2013; Bailón-Ruiz 
et al., 2018; Calsamiglia et al., 2020; Estrany et al., 2019; Holman et al., 
2016; Michez et al., 2016; Müllerová, 2019; Näsi et al., 2018). Consid-
ering the increasing use of the tool, and the important impact the design 
of the study has on results, many scientists and practitioners emphasize 
the need for standardization to assure harmonizing the UAS data 
acquisition and subsequent processing with the research goal (Manfreda 
et al., 2018). For such standardization, a great variety of UAS-based 
research in the field of vegetation science needs to be synthesized into 
an integrated framework, including the common grounds and 
challenges. 

Here, we present a comprehensive synthesis aiming to categorize 
research and identify common rules that shape workflows applied in 
UAS-based studies facing complexity in ecosystems. Ecosystem 
complexity is regarded as an important driver of biodiversity and 
ecosystem functioning across taxa, biomes and spatial scales (Stein et al., 
2014). The variety of UAS applications in the vegetation heterogeneity 
assessment is immense, and so are the procedures described in the 
literature. Irrespective of the ecosystem, similarities can be found 

according to the research aims (the ecosystem / community / individual 
property addressed). Vegetation properties encompass varying levels of 
heterogeneity in time and space, allowing classification into the 
following major components: (i) composition (covering a topic of 
biodiversity), (ii) structure (such as biomass and stand structure) and 
(iii) status (such as phenology stage and plant stress) (cf. Randlkofer 
et al., 2010). Following the concept of Essential Biodiversity Variables 
(EVB; Jetz et al. 2019), and remote sensing enabled EVBs (Reddy et al. 
2021) these components could be translated into (i) compositional di-
versity (EVB groups of species populations & community composition), 
(ii) structural diversity (EVB group of ecosystem structure) and (iii) 
functional diversity (EVB groups of species traits & ecosystem function). 
All the components cover both static and dynamic processes, with 
different range and dimension of the dynamics. Still commonalities 
within these ecosystem components can be identified. Here, we present 
a synopsis as a general framework of UAS-based vegetation studies 
allowing us to design a UAS survey according to its purpose. We support 
the framework by detailed schemes of individual components, as well as 
examples of best practices of UAS studies covering each of the vegetation 
components and related applications. 

2. General framework of UAS-based vegetation survey 

The characterization of individual components within the frame-
work of the vegetation complexity requires a specific survey design. The 
decision tree in Fig. 2 represents a general framework of vegetation 
surveys using UAS. The studies are divided according to the component 
of vegetation heterogeneity addressed: (1) species composition (pa-
rameters of biodiversity), (2) ecosystem structure (stand volume/ 
complexity), (3) plant status (phenology and stress levels), and (4) dy-
namics (disturbances and regeneration) (see https://www.costh 
armonious.eu/characterizing-vegetation-complexity-with-uas/ and 
Supplement 1 for an interactive workflow). To reach the best quality 
results, the design of the survey including quality of the data and se-
lection of the processing algorithms should be driven by the purpose of 
research and characteristics of the ecosystem property of interest. In-
formation on abiotic conditions (not necessarily derived from UAS sur-
veys) are often essential for the models. Many of the processes are 
dynamic, so the temporal aspects related to abiotic and biotic factors 

Fig. 1. Different platforms and sensors 
in UAS surveys; a) Lighter-Than-Air 
Helikite Balloon with Sony A7RII used 
for renaturation monitoring; b) BRA-
MOR ppk Fixed-Wing with Micasense 
Red Edge used for riparian vegetation 
monitoring; c) DJI Inspire 2 with zen-
muse x5s RGB camera, used for shallow 
water vegetation and beach cast moni-
toring (Palanga, Lithuania), and d) Leica 
Aibot AX 20 with multidirectional 
sensor prototype (5 Sony ILCE-QX1 RGB 
sensors for capturing NADIR and 4 
oblique images). (For interpretation of 
the references to colour in this figure 
legend, the reader is referred to the web 
version of this article.)   
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need to be added to describe the changes properly. In the Fig. 2., abiotic 
conditions, such as geomorphology, soil properties, climatic conditions 
and hydrology are not included, still they all play a significant role in 
shaping the vegetation heterogeneity and influence the survey design 
(Tmušić et al., 2020). 

The resolution of the UAS survey has to be adjusted depending on 
ecosystem characteristics, i.e. according to species and individuals’ 
similarity and targeted heterogeneity component. The resolution, as the 
similarity, is hereafter considered in the following dimensions: time, 
space and electromagnetic spectrum. For example, when characterizing 
vegetation composition for the purposes of biodiversity assessment, 
monitoring of rare and invasive species, or understanding the processes 
of species coexistence and succession, it is crucial to differentiate among 
the species. Such differentiation will depend on the way the species 
occupy space through time. Furthermore, their intrinsic morphological 
properties will produce specific morphological and spectral signatures 
that can be applied for either species identification or evaluation of their 
status using remote sensing techniques. In case the spectral/textural 
characteristics of co-occurring species are similar, differentiation would 
require higher spectral resolution to increase their spectral separation 

(Chadwick and Asner, 2016; Marvin et al., 2016). In general, the less 
distinct the feature is (e.g. species with a high degree of similarity to the 
surroundings), the more advanced sensors and the more complex 
methodology are required (Fig. 2). The same applies for assessing 
ecosystem structure, where for sparser ecosystems (e.g. sparse arid or 
semi-arid shrublands or tundra), photogrammetric point cloud can be 
sufficient, whereas for denser and more complex ecosystems such as 
forests, advanced LiDAR sensor becomes indispensable for most appli-
cations (Barbosa et al., 2016; Beland et al., 2019; Kent et al., 2015; 
Lefsky et al., 2002). The levels of conspicuousness and symptomaticity 
of the studied phenomenon (e.g. phenological stage and/or physiolog-
ical status caused by stress) influence the required level of spectral/ 
spatial/temporal resolution (Fahlgren et al., 2015; Ghosal et al., 2018; 
Singh et al., 2016) and, again, the sophistication of the analytical 
models. In case of asymptomatic physiological status at visible range, it 
is very difficult to reach satisfactory results unless additional advanced 
hyperspectral or thermal sensors are used (Gago et al., 2017). 

Insufficiently coarse resolution can decrease the accuracy, still more 
detail does not automatically mean better results. Whereas very high 
spatial resolution can be extremely beneficial for detection of small 

Fig. 2. Decision tree for designing the UAS-based vegetation survey according to the phenomenon/part of vegetation heterogeneity addressed. Details on each 
component of vegetation heterogeneity are explained in the following Figs. 3, 4 and 5, and in an interactive workflow at https://www.costharmonious.eu/characte 
rizing-vegetation-complexity-with-uas/ and in the Supplement 1). 
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patches or individual plants, it can tremendously increase the data 
complexity, processing time and data storage. Additionally, increasing 
spatial resolution from centimeters to millimeters can make classifica-
tion extremely difficult, breaking individuals into a complex of branches 
and stems, green and dry leaves, individual flowers within the inflo-
rescence, insects and soil background. Such extreme detail of UAS data 
also brings new challenges in the training and validation process (due to 
the precision limits of field Global Positioning System instruments, 
GPS), and proper matching of layers in case of change detection and 
canopy height models (Müllerová et al., 2017a). The three components 
of resolution, spatial, spectral and temporal, are interconnected, and 
certain trade-offs exist between them (Lisein et al., 2015; Michez et al., 
2016). Thus, optimal resolution should be carefully chosen considering 
the purpose of the study as well as the target vegetation addressed. 

3. The hands-on challenge: How to assess species composition, 
ecosystem structure and plant status by employing UASs? 

3.1. Species composition: Highlighting biodiversity 

Plant species composition varies along the axes of spatio-temporal 
heterogeneity (Lambers et al., 2008; Pugnaire and Valladares, 1999). 
Whereas at coarse scales it is defined by biogeographical zones and bi-
omes, at finer scales, is determined by changes in composition as a 
function of abiotic conditions as well as inter-specific interactions with 
human management and co-occurring plant and animal species (Au-
gustine and McNaughton, 1998; Fedele et al., 2017; Pugnaire and Val-
ladares, 1999). 

Examples where UASs have been used for specific vegetation/habitat 
types show that the challenges are to a certain extent case specific, 
depending mainly on natural characteristics. UASs were successfully 
applied in habitat mapping and monitoring for nature conservation 
purposes. Decisions on which methods and data to choose for UAS 

Fig. 3. Workflow for UAS-based detection of plant species composition (biodiversity, adapted from Müllerová, 2019).  
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assessment of plant composition shall be driven by the target species/ 
vegetation characteristics. For species expressing low spectral and 
structural similarity to the co-occurring species, coarser resolution data 
combined with simple models would be sufficient; whereas for less 
distinct species, highly similar to their surroundings, a more complex 
approach must be applied (Müllerová, 2019). Accurate distinction be-
tween similar species is demanding in respect to the data resolution 
(spatial, temporal and/or spectral) and algorithms (using more complex 
or hybrid approaches); subtle differences in phenology or structure can 
help (Fig. 3). 

For species that do not have a specific form (such as patchiness, and 
shape of individuals, inflorescences or the leaves) but are rather spec-
trally distinct from their surroundings, the pixel based approach might 
be appropriate (Müllerová et al., 2017a; Tamondong et al., 2020). In-
formation on shape, texture and context can markedly improve preci-
sion of the species determination (Franklin, 2018; Gini et al., 2014). This 
is especially true for the species and/or vegetation types that have 
distinct shapes and/or form patches (Müllerová et al., 2017b), and for 
low cost digital Red-Green-Blue (RGB) cameras lacking near infrared 
band and with high intercorrelation of visible bands (Pande-Chhetri 
et al., 2017). In general, OBIA represents a powerful tool in UAS data 
processing that can to some extent reduce the noise and consequent “salt 
and pepper” effect caused by ultra high spatial resolution. However, the 
extreme detail leads to a large number of objects with varying spectral, 
morphological and proximity characteristics, which can be controlled by 
choosing the right spatial resolution (Yuba et al., 2021). 

For complex vegetation patterns and species with a high degree of 
similarity, there is a need for higher spectral/spatial/temporal resolu-
tion data, multiple data sources, three-dimensional (3D) information on 
stand height and structure and/or advanced algorithms (e.g. Kattenborn 
et al., 2020; Martin et al., 2018; Michez et al., 2013). Machine and deep 
learning algorithms are particularly helpful to map complex vegetation, 
and can overcome the problem with laborious collection of training 
samples and ultra high spatial resolution (Liu et al., 2018). 

To summarize, provided that the methodological workflow of the 
mision follows the species/habitat characteristics, UASs represent a 
powerful tool to be employed in biodiversity monitoring schemes, 
enabling assessment of species diversity and detection and mapping of 
individual species and/or habitat types. Thanks to very high spatial and 
temporal resolution, either repeatedly throughout the phenological 
season or using the optimal time window for the data acquisition, it is 
possible to map even the species that are difficult to distinct from the 
surroundings, especially in case information on 3D structure is added, 
several sensors combined and/or sophisticated algorithms of machine 
and deep learning deployed. 

3.2. Ecosystem structure: Measuring biomass, volume and stand 
complexity 

The structure belongs among the main drivers of resource variability. 
Particularly in forest environments, fine-scale information on canopy 
structure derived from UAS like canopy cover, gaps, vertical and hori-
zontal structure and spatial aggregation are important since structure 
drives many ecological processes such as understorey diversity, seed 
establishment, and forest regeneration, and shapes important ecosystem 
services (Bagaram et al., 2018; Getzin et al., 2012; Kent et al., 2015). 

Examples of assessing structure can be found for various ecosystems, 
such as shrublands (Cunliffe et al., 2016; Swetnam et al., 2018) and ri-
parian areas (Meneses et al., 2018), but most UAS studies regard forests. 
In the latter, vegetation structure is addressed to analyse the stand 
complexity or quantify its volume/biomass (Fig. 4). 3D information is 
generated by different sensors and stored as point clouds for further 
processing. Normalization of ground using precise Digital Terrain Model 
(DTM) is greatly recommended (Aguilar et al., 2019). For 3D informa-
tion, both passive (optical) and active (e.g. LiDAR) sensors can be used 
(Camarreta et al., 2020). While 3D information describing the upper 

most canopy layer can be acquired by various sensors, LiDAR sensors are 
necessary for the generation of DTM under the forest canopy and 
assessment of structural layers that is intrinsically related to the stand 
density and complexity. 

Laser scanning provides the most accurate information on structural 
components including height, canopy dimensions, gaps, and biomass, 
and if mounted on UAS it can provide very high spatial details. However, 
its application is still limited due to the high costs and the fact that the 
sampled area is substantially smaller compared to the aerial LiDAR. In 
case of dense stands with complex multidimensional structure, active 
sensors (LiDAR) or DTM-independent approaches are an option (Gian-
netti et al., 2018), whereas passive sensors are not able to penetrate the 
canopy (especially during leaf-on season) to reach the inner structural 
layers and the ground (Kašpar et al., 2021). Still, for less dense and 
complex stands, passive optical sensors represent a low cost and simple 
solution to provide information on forest attributes including height, 
canopy dimensions, and biomass (Baltsavias et al., 2008; Dandois and 
Ellis, 2010; White et al., 2015). Photogrammetric point clouds are 
derived from overlapping imagery by using the digital imaging photo-
grammetry approach such as Structure from Motion (SfM) algorithm 
(Westoby et al., 2012), preferably with high overlap and lower flight 
altitudes (Seifert et al., 2019). 

Still, many issues remain using passive instead of active sensors, 
especially related to closed or vertically complex canopy and shadows 
(Dandois and Ellis, 2013). Precision of results is also species specific; 

Fig. 4. Workflow for UAS-based ecosystem structure assessment.  
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while for evergreen single-stemmed tree species, photogrammetric 
products are comparable to LiDAR in capability to capture forest 
structure and estimate the biomass (especially for regularly designed 
forest plantations and open forests), it is less reliable for deciduous trees 
(especially during leaf-on period) and for canopy cover above 60 to 80% 
(Guerra-Hernández et al., 2017; Wallace et al., 2016). To overcome 
these problems, the data sources can be joined, such as adding spectral 
properties to LiDAR, or combining LiDAR-derived DTM and a series of 
photogrammetrically-derived DSMs to assess changes in the canopy 
(Lisein et al., 2013; Wallace et al., 2016). However, in such cases, precise 
co-registration is required. Alternatively, analyses of forest structure and 
gaps can be based solely on optical properties of UAS imagery, using the 
effect of darker objects (shaded gaps; Bagaram et al., 2018; Getzin et al., 
2014). Nevertheless, such approach might bring even more imprecision 
with dense and/or highly vertically heterogeneous canopies. 

As summarized in Fig. 4, from the examples proposed from different 
communities and environments, the choice of the sensor (active vs 
passive remote sensing) is particularly important for the structural 
assessment, and should respect the complexity of the stand to be 
sampled. 

3.3. Plant status: phenology and plant stress 

Plant status is driven by phenological stage and physiological status 
in response to endogenous (circadian and seasonal rhythms) and exog-
enous factors (abiotic stressors). High spatial and temporal resolution of 

UASs provide an unprecedented detailed insight into the ecosystem’s 
response to (a)biotic stress (D’Odorico et al., 2020). Most of the papers 
using UASs to assess plant stress are performed in agricultural and 
forestry applications focusing only on a single species at a time, while for 
species rich natural ecosystems, such studies are largely lacking (but see 
e.g. Banerjee et al., 2020; Zhang et al., 2017). 

Studied phenomena can range from distinct and well defined phe-
nomena by spectral properties that can be assessed using relatively low 
spatial, temporal and spectral resolution, to the less conspicuous/ 
symptomatic phenomena, where the most sophisticated hyperspectral 
and thermal sensors coupled with complex modelling are needed 
(Fig. 5). In addition, even defining specific factors affecting the partic-
ular plant physiological status might be difficult due to the fact that the 
plant response to different types of stress is often indistinctive (Jones 
and Vaughan, 2010). 

For example, UASs thermal imagery and the related leaf energy 
balance model estimations can be used to detect (a)biotic stress early 
since stomata are highly reactive to any stress, from abiotic stress such as 
drought (Gago et al., 2017) and herbivory attacks (Smigaj et al., 2019). 
In addition, stomata closure promotes general increase in canopy tem-
perature that can be used as a physiological stress indicator (Smigaj 
et al., 2019). Very high spatial resolution of UAS data opens the op-
portunity to assess drought stress at individual level. 

As for phenological stage, UASs provide both very high spatial detail 
and possibility of right timing of the data acquisition to capture a 
particular phenomenon, e.g. flowering (Carl et al. 2017; Müllerová 

Fig. 5. Workflow for UAS-based assessment of plant status.  
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et al., 2017b; de Sá et al. 2018). Unlike the satellite data, UAS surveys 
allow data acquisition on demand and enable to zoom on individual 
plants within the stand, and therefore to study variation within plant 
populations and/or trace the very first or last individuals of particular 
phenophase (Fawcett et al., 2020). Improvements of sensor resolution 
and/or ability of UAS to fly very close to the canopies obtaining sub-cm 
resolution (such as for nano and micro-UASs) are still not widely 
employed even though the spatial information they provide is tremen-
dous. For instance, ultra high spatial resolution enables the detection of 
flowering individuals without the need for higher spectral resolution 
sensors, opening a new opportunity to use micro-UASs to characterize 
ecosystem dynamics (Gago et al., 2020). 

3.4. Ecosystem dynamics: Disturbances and regeneration 

Many natural processes are dynamic, addressing plant composition, 
ecosystem structure or plant status from a temporal perspective. 
Whereas data collection itself follows the workflows suggested in pre-
vious sections depending on the type of ecosystem/phenomenon and 
heterogeneity addressed, a change detection approach is adopted for 
repeated UAS measurements to study the changes in time. Still, we have 
to bear in mind that for different components of heterogeneity 
(composition, structure and status), the dynamics can show different 
ranges and dimensions that must be reflected by the survey design. 

To assess dynamic processes, such as phenological development or 
stress response, the temporal dimension is indispensable. Operational 
satellite data are the most commonly used for this purpose, however due 
to lower spatial resolution they are suitable mostly at global and land-
scape scales and for large homogeneous stands (Berra et al., 2019), and 
their temporal coverage is limited by their revisiting frequency. On the 
contrary, UAS can provide very high spatial and temporal resolution 
(revisiting time), and flexible, frequent and “ad hoc” data acquisition. 
Thus, UASs allow to explore the phenological cycle in unprecedented 
detail, e.g. individual-level phenological patterns and intraspecific 
variation (Fawcett et al., 2020; Park et al., 2019). Because of unprece-
dented fine scales, UAS are also very appropriate for dynamic ecosys-
tems such as riparian areas and river ecosystems (Laslier et al., 2019; 
Michez et al., 2016). 

In case of dramatic events, absence of data is common. Here, flexi-
bility provided by UAS brings immediate revenues, since the surveys 
need to be conducted as soon as possible after the disturbance to support 
the decision-making and prevent further damage. Flights can be con-
ducted immediately, eliminating the risk of injury linked to field sur-
veys, such as in case of forest fires and windthrow (Mokroš et al., 2017; 
Yuan et al., 2015). UASs was also shown to assist in monitoring post-fire 
regeneration (Fernández-Guisuraga et al., 2018; Larrinaga and Brotons, 
2019). 

Insect disturbances in forests act at varying spatial and temporal 
scales, and understanding local dynamics as well as early detection of 
infestation onsets, which can be both facilitated by UAS, are very 
important (Senf et al., 2017). A variety of approaches and sensors were 
applied in UAS analyses of forest infestation dynamics; not only so-
phisticated hyperspectral sensors (Näsi et al., 2018) but also simpler 
sensors, such as multispectral or even low cost consumer grade cameras 
(Cardil et al., 2017; Minařík and Langhammer, 2016). UAS can also 
serve to study natural regeneration of forest after the outbreak (Röder 
et al., 2018). UAS assessment allows more cost-effective monitoring 
compared to the field surveys, and enables to acquire data at very high 
frequency providing observation data about the gradual spectral change 
after the attack. It can therefore be used to estimate the impacts of forest 
defoliation in spatial and temporal terms, for better assessing outbreak 
spread patterns and providing guidance in forest management pro-
grams. For possible extension of monitoring over larger areas, integra-
tion of UAS and satellite data is to be considered. 

4. Research gaps and future perspectives 

Exploring the capabilities of different statistical, spatial, temporal 
and textural settings, UAS represent a huge potential for assisted vege-
tation assessment. There is no doubt that recent technical advances 
significantly increase capabilities and accessibility of both platforms and 
sensors. One such example is the geometrical precision of UAS ortho-
mosaics. Geometric distortions, particularly significant in forest or other 
complex environments (see Ludwig et al., 2020), can to a large extent 
deteriorate reproducibility, complicate the assessment of dynamic pro-
cesses and decrease the power of change detection in general. Even 
though the number and design of ground control points are still an open 
debate in the scientific community (Padró et al., 2019), recent advances 
in affordable miniaturized GPS and on board UAS (such as Real-time 
kinematic - RTK) push the boundaries towards automation and 
increased geometric accuracy without (or with severely limited amount 
of) field work. 

In addition, technological progress is opening brand new opportu-
nities, such as extraction of meaningful information through standard-
ized procedures without a need to be a specialist in the remote sensing 
field, mechanistic models and/or on-the-fly incorporation of ground and 
plant measurements to calibrate the remote sensing models, different 
flight modes (flying closer to the target, longer flights covering larger 
area, penetrating the forest canopy to assess the forest herb layer, 
Hyyppä et al. 2020; Ryddel et al., 2020), autonomous/real-time sensing 
(improving temporal resolution to assess plant stress, detection of non 
forested and eroded areas in tropical rainforest, Cruz et al. 2016), or 
targetless workflows to capture accurate reflectance values (Schneider- 
Zapp et al., 2019). 

However, even though technological advances are expected to 
overcome many limits of current technologies and methodologies, some 
constraints will certainly remain, such as UASs regulations and re-
strictions. Recent harmonization of UASs regulations within the EU will 
definitely foster collaborative efforts and promote competitive devel-
opment in the field. 

5. Concluding remarks 

UASs offer products and applications never imagined just a decade 
ago. However, optimizing the workflow is still a matter of discussion. In 
our review, we summarized and generalized the procedures of UAS- 
based vegetation research. Aiming to provide a framework for optimal 
workflow to characterize vegetation complexity with UAS, we divided it 
by the major components of vegetation complexity: biodiversity, struc-
ture and status, covering also the dynamic processes. We propose a 
general framework and detailed decision trees for each component 
including examples, and synthesize that any UAS survey must be built 
respecting the following steps: (i) get familiar with the phenomenon to 
be studied; (ii) choose suitable UAS and appropriate temporal, spatial 
and spectral resolution; (iii) select either simple or more sophisticated 
processing, classification algorithms and models depending on the 
complexity of the studied phenomenon; and (iv) carefully interpret the 
results considering the weaknesses and limits of UASs methods. During 
the process one must bear in mind that the simpler the procedure, the 
more robust, repeatable, applicable and cost effective it is; proper design 
minimizes the efforts and maximizes the best results, and appropriate 
temporal, spatial and spectral resolution are essential key-points. The 
experimental design must thus be adapted to the studied phenomenon 
and not the other way around. Still, even if UAS technology is capable 
and widely available, a combination of profound ecological background 
(Goddard et al., 2021) and robust knowledge on the limits of UAS 
technology are indispensable to avoid misinterpretation of the findings. 
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Evaluation of common reed (Phragmites australis) bed changes in the context 
of management using earth observation and automatic threshold
Edvinas Tiškus , Diana Vaičiūtė, Martynas Bučas and Jonas Gintauskas

Marine Research Institute, Klaipėda University, Klaipėda, Lithuania

ABSTRACT
There is no easy in situ way to monitor large waterbodies for their aquatic vegetation change, 
especially during mowing works. The objective of this study is to choose the best automatic 
workflow that would estimate a change in the reed bed area and density over time. This workflow 
will assess the mowing effect on reeds over 3 years in the Plateliai Lake (Lithuania). Sentinel-2/MSI 
images were used to derive reed beds using water adjusted vegetation index (WAVI) and normalised 
difference water index (NDWI). The indices were classified using seven different binary thresholding 
algorithms. Results were validated with orthophotos gathered from unmanned aerial vehicle 
surveys in mowed regions and one reference area. Analysis demonstrated that using the NDWI 
together with the Yen thresholding algorithm generated the best accuracy results, with the highest 
accuracy resulting with high vegetation areas where the area under the curve values were 0.85 ±  
0.17. The changes in estimated density did not show a significant correlation between mowed and 
reference areas and years. The results indicate that Sentinel-2/MSI is a feasible tool for the evaluation 
of reed bed change. On this basis, it is recommended to implement it as an additional monitoring 
tool that covers larger areas than in situ monitoring.
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Introduction

One of the most common invasive species in inland 
waterbodies is considered a common reed (Phragmites 
australis), which is an easily grown plant that thrives 
in deep moisture-retentive soils (Duke, 1983). Due to 
its ability to acclimatise, a common reed has spread all 
over Europe, Northern America, Asia and Australia, as 
well as other parts of the world (Eller et al., 2017). Reed 
expansion is generally considered undesirable in nat-
ure reserves because areas dominated by common 
reeds generally have lower plant species richness 
than the initial marsh or fen vegetation. Commonly, 
the mowing of reeds is performed in wetlands for 
animal species requiring an open vegetation structure 
(Güsewell et al., 2000). Moreover, the mowing of reeds 
also removes nutrients from the water and keeps 
a waterbody attractive to tourists. Management pro-
grams have proven that common reeds can be con-
trolled, and in most cases, natural vegetation will 
return; however, it is also important to note that 
some areas have been so heavily manipulated and 
degraded that it may be impossible to eliminate com-
mon reeds from them. There is no doubt that physical 
removal of reeds is useful in the short term but long- 
term effects of mowing are still unclear (e.g. how 
intensive mowing should be performed and what opti-
mal height of mowing reeds), and recommendations 
to restore reed-invaded fen meadows by mowing in 

the summer are based on circumstantial evidence and 
still need experimental testing (Güsewell et al., 1998).

Monitoring provides the data needed to decide if 
control measures are necessary to control invasive 
macrophyte populations. When a control program is 
begun, it is important to monitor targeted macrophyte 
populations so that the program’s effectiveness can be 
determined and, if possible, leave untreated control 
areas that could be monitored as well for comparison. 
Relying only on in situ measurements can be time- 
consuming, hard to cover large areas and do frequent 
measurements, as well it is often difficult to get aquatic 
vegetation samples as accessibility to them is hard 
(Silva et al., 2008; Vis et al., 2003). It is imperative to 
continue monitoring even if a control program suc-
ceeds initially because common reeds may reinvade 
and the sooner new patches of infestation of an earlier 
stage are detected, the easier and cheaper they can be 
suppressed, also control techniques may need to be 
applied several times or, perhaps, regularly (Datta 
et al., 2021). Reed change due to mowing disturbances 
and herbicides has been thoroughly studied by Derr 
(2008) and it was found that reeds do not fully recover 
from the first year of mowing and reed regrowth rate 
the next year after mowing could be reduced by 
approximately 55% if no herbicide is applied; never-
theless, it was done in a small area of 4.5 m2 as well in 
controlled containers. Monitoring effects of reed 
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mowing could be improved by using more efficient 
methods such as remote sensing data (Bresciani et al.,  
2011).

Earth Observation-based (EO) products can poten-
tially support public authorities in managing inland 
waters, e.g. for controlling invasive aquatic plants by 
giving spatial information useful to evaluate the invasion 
dynamics (Pinardi et al., 2018). Some studies were already 
performed for common reed detection using EO data. 
Detection of macrophytes in these studies was done by 
calculating vegetation indices that also allowed the assess-
ment of the health of vegetation as well as complexity 
(Villa et al., 2013). Most of the studies use Landsat 7 ETM 
+ or Landsat 8 OLI data that has a long timeframe starting 
from 1984 with spectral (six spectral bands in the visible 
and near-infrared regions) and temporal (revisiting time 
of 16 days) resolution, which allow vegetation change 
monitoring. Even though Landsat 7/8 has a sufficient 
spatial resolution (up to 30 m), Sentinel-2 MSI surpassed 
it with up to 10 m resolution and is more useful for 
monitoring smaller changes in vegetation (Qin et al.,  
2021). The simplest normalised vegetation index 
(NDVI) algorithm was used for reed detection in several 
studies (Bresciani et al., 2009; and references therein). In 
Lake Garda (Italy), NDVI demonstrated 91% of accuracy 
in reed bed spatial coverage detection (Villa et al., 2013). 
Relying only on NDVI can generate misleading classifi-
cation, as some features in water, e.g. cyanobacteria sur-
face accumulations, have similar reflectance as 
macrophytes. In past decades, more sophisticated algo-
rithms such as Water Adjusted Vegetation Index 
(WAVI) and Normalised Difference Aquatic Vegetation 
Index (NDAVI) were developed that are adjusted to the 
water environment (Villa et al., 2013, 2014, May), and 
together with higher Sentinel-2 resolution, these algo-
rithms improve vegetation monitoring accuracy. 
Experiments that were done in Lake Garda and Mantua 
Lake system (Italy) showed that NDAVI and WAVI 
demonstrated high sensitivities, comparable and often 
slightly higher than the other indices (NDVI, leaf area 
index, soil adjusted vegetation index), in particular over 
aquatic vegetation (Villa et al., 2014, May). Despite the 
high detection accuracy of vegetation indices, it is 
a challenge to delineate transitional zones such as 
between water and floating-leaved or emerged macro-
phytes (helophytes) and between helophytes and land 
vegetation, therefore, using normalised difference water 
index (NDWI) can improve delineation between canopy 
and water as shown by some studies (Gao, 1996; 
McFeeters, 2013; Szabó et al., 2016).

Interest in the mapping of wetland environments 
and the classification of their resources using EO is 
a growing topic as spectral signatures may vary sub-
stantially in different wetlands, and they are hard to 
access for detailed in situ analysis (Amani et al., 2018; 
Bhatnagar et al., 2020). The studies on calculating 
Above Ground Biomass (AGB) in wetlands from EO 

images acquired efficient results such as an accuracy of 
R2 = 0.59 and RMSE = 194 g m−2 with UAV-derived 
reed heights and ratio vegetation index in the Nan Da 
Gang Wetland Reserve (Lu et al., 2022). A higher AGB 
accuracy (R2 = 0.65 and RMSE = 168 g m−2) was 
achieved by combining the LiDAR and hyperspectral 
images in the Zhangye National Wetland Park (Luo 
et al., 2017). Although this parameter is useful for 
wetland management (including the effectiveness of 
reed mowing), extensive in situ measurements 
together with laboratory analysis should be done first 
to calibrate the reed height estimates derived from 
UAV or LiDAR, as non-local models should be used 
with caution (Bojórquez et al., 2020).

Efficient and automatic segmentation of vegetation 
indices is an important step for evaluating the mowing 
effect. For single-band images, thresholding is the most 
common pre-processing step and the simplest form of 
thresholding is binary, where foreground and back-
ground are separated. The goal of using an automatic 
threshold is to reduce the need for in situ measurements 
that can be costly and time-consuming. The most com-
monly used thresholding algorithm for remote sensing 
images is Otsu (Otsu, 1979), which was used for vegeta-
tion detection (Srinivas et al., 2019), coastal aquaculture 
area (Lu Yewei and Lu Yewei, 2015), shoreline mapping 
(Sunder et al., 2017), etc. Despite the apparent easiness of 
the thresholding process, it is a complex procedure given 
the vast array of circumstances and environments that are 
unique to each image (Carabias, 2012).

The objective of this study was to determine the best 
approach for the evaluation of reed bed area changes due 
to mowing using remote sensing methods and automatic 
thresholding algorithms. This was done by testing water 
and aquatic vegetation indices by masking open water. 
We also assessed, if and how the determined approach 
accuracy of detecting reed beds depends on their density. 
Based on this method, we hypothesised that the mowing 
effect from EO data should be more apparent in larger 
than 0.1 ha reed bed areas since such area almost corre-
sponds to the area of Sentinel-2/MSI 10 m2 pixel size with 
a buffer of one pixel in all directions.

Materials and methods

Study area

Plateliai Lake (area 1.200 ha, average depth 10.5 m, max-
imum depth of 49.1 m) is an oligo-mesotrophic lake (2.4  
± 1.8 µg chlorophyll-a l−1 in the period 2001–2010) that 
belongs to the Žemaitija National Park, located in the 
western part of Lithuania (Figure 1(a)). Vegetated areas 
by common reeds are not spread evenly throughout the 
lake, and more reed beds are in the eastern part 
(Sinkevičienė et al., 2005). From 2017 to 2019, the 
Žemaitija National Park directory implemented mowing 
of reed beds in the littoral zone of the lake in 7 areas 
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(Figure 1(a)). In total, eight AOIs (area of interest) were 
selected for further analysis. Seven AOIs correspond to 
the areas where the mowing of reed beds was performed, 
and one AOI was selected as a reference, where the 
mowing was not performed (Figure 1(a)). The first 
seven AOIs were numbered after the technical specifica-
tion document of reed mowing (Technical specification 
of Plateliai Lake reed mowing, 2017). All areas combined 
cover 18 ha, 1.5% of the whole lake area. A common reed 
dominated in selected AOIs, while lakeshore bulrush 
(Schoenoplectus lacustris) formed small stands only in 
a few AOIs. Therefore, all macrophyte species within 
the reeds were considered as part of the reed bed in this 
study.

The exact date of each year’s mowing is not 
known, but it was always performed between 
20 July and 10 September. The mechanical cutting 
method was applied from a boat in deeper areas 
(Figure 1(b)) and using a scythe in shallower areas. 
In depths ≥0.5 m, reeds were cut by leaving 30 cm 
stems from the bottom, and in shallow areas (<0.5  
m depth), they were cut to the bottom. In most of 
the areas, reeds were entirely mowed, except for 
one AOI that is relatively the largest (AOI 5), 
where the mowing was performed in stripes of 5  
m width by leaving a part of the reed beds to 
enhance biodiversity conditions and habitats for 
local bird and fish species (Figure 1(b)).

The study covered the period from 2016 to 
2020. The mowing of reeds was performed in 
2017, 2018 and 2019, while 2016 and 2020 are 
considered the reference years since mowing was 
not performed.

UAV data for validation

UAV images were acquired in several AOIs (Table 2, 
AOI: 1, 4, 5, 10, 11, reference) to compose orthophotos 
and validate the mapped reed beds that were derived 
from satellite data (see Sect 2.4). The images were 
acquired using a DJI Phantom 4 multi-rotor UAV 
that has a 1” CMOS 20-megapixel RGB camera with 
an 84° field of view. Flight missions were planned 
before flight using the DroneDeploy app with the 
following parameters: flight height of 40 m; 75% 
front and side overlap between images; flight angle 
facing towards or away from the sun to minimize 
a sun glint effect (Joyce et al., 2019); coverage polygon 
larger than mapped AOI. With these parameters, 
UAV aerial images had a ground spatial resolution of 
2 cm per pixel.

Four ground control points (GCPs), made from 
plastic, were used to georeference orthophotos and 
get more accurate results. GCPs were measured with 
a Leica 1200 smart GPS rover that uses the Global 
navigation satellite system. Image mosaicking was per-
formed using the OpenDroneMap (OpenDroneMap,  
2020) software that implements structure from 
motion to build orthophotos, digital elevation models 
and 3D models of the area. Homogenous water surface 
lacks tie-points (distinct pixels matching in two pic-
tures taken next to each other), therefore only areas 
with emerged macrophytes were mosaicked.

After composing orthophotos, 12 of them out of 16 
were selected (with clouds and water waves not influ-
encing the final result) for validation with classified 
rasters derived from satellite images. Reed beds were 
manually delineated from the orthophotos using QGIS 

Figure 1. (a) Plateliai Lake with areas of interest (AOIs) indicated by numbers (where mowing of reed beds was performed), 
“reference” (where mowing of reed beds was not performed) and their size (in ha), (b) UAV image (acquired on the 10th July 2018) 
of AOI 5, where reed beds were mowed every second line and mowing process, (c) example of reed bed (AOI 4) before mowing.
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version 3.16 (QGIS.org, 2022, 2022). The density of 
reeds was evaluated visually by dividing orthophotos 
into 10 m2 polygons equal to Sentinel-2 pixel size. 
Polygons without vegetation were classified as water 
(0% vegetation, n = 540), while polygons with reeds 
were classified into three density classes: low density 
(25% vegetation, n = 687), medium density (50%, n =  
461) and high density (100%, n = 360).

Satellite data

The Multispectral Instrument (MSI) on board 
Sentinel-2A and Sentinel-2B data were used. 
Sentinel-2/MSI has a spatial resolution of 10 m (4 
bands), 20 m (6 bands) and 60 m (2 bands) and 
a spectral resolution ranging from 440 nm to 2202  
nm in 12 bands. Over Plateliai Lake Sentinel-2/MSI 
revisit time is every 3 days.

Most Sentinel-2/MSI products were already pro-
cessed to Level-2A data and are available for download 
in the Copernicus Open Access Hub (https://scihub. 
copernicus.eu/). The atmospherically corrected 
(Level-2A) images before September 2017 were not 
available for download, therefore Sen2Cor processor 
was used for the atmospheric correction of Top-Of- 
Atmosphere (TOA) Level-1C images. All Sentinel-2/ 
MSI images were resampled to a final spatial resolu-
tion of 10 m. In total, 16 Sentinel-2/MSI images were 
used (Table 1), considering the date closest to the 
beginning and end of the mowing period (i.e. between 
the 20 of July and the 10 of September). Most of the 
images were cloud-free, except for AOI 5, where the 

image closest to the mowing of reeds 
(6 September 2020) contained cloud shadows; there-
fore, the image acquired on the 1 September 2020 was 
used instead, in AOI 5. In addition, the 19 June 2016 
image had a cloud shadow on half of AOI 13, but since 
there were no cloudless images during this time, the 
image was used excluding AOI 13 from the analysis.

Calculation of the area and density covered by 
reeds using sentinel-2/MSI data

The effect of reed mowing in Plateliai Lake was tested 
using two parameters: changes in the area covered by 
a common reed and changes in its density within 
AOIs. The evaluation was performed in five major 
steps indicated in the workflow (Figure 2).

Step 1: Masking the land. The Sentinel-2 image 
from mid-spring was used for masking the land 
(Table 1). The image acquired in mid-spring repre-
sents the period when aquatic vegetation had not yet 
started growing. The normalized difference vegetation 
index (NDVI) was utilized (Rouse & Haas, 1973) since 
it is most commonly used for land vegetation mapping 
and is also suitable for aquatic plants (Powell et al.,  
2014; Sakuno & Kunii, 2013). This algorithm uses 
a red spectral band, where radiation is mostly 
absorbed by vegetation, and Near Infrared (NIR) 
band, which appears relatively bright on vegetation. 
In the case of Sentinel-2/MSI, NDVI (Eq. 1) was cal-
culated using Band 8 (NIR) and Band 4 (Red). The 
NDVI raster was classified with an Otsu binary 

Table 1. Dates of sentinel 2 image acquisition with corresponding dates of validation from the UAV 
images and AOI and mowing status of reed beds (see Sect 2.2).

Sentinel-2 MSI UAV dates and AOI Mowing status

10 May 2016 - Land masking
19 Jun 2016 - Before mowing
28 Aug 2016 - Before mowing
05 May 2017 - Land masking
14 Jul 2017 - Before mowing
31 Aug 2017 - After mowing
10 May 2018 - Land masking
17 Jul 2018 2018 Jul 10 (AOI:5, reference); 18(AOI:4,5); 19(AOI:1, 10, 11) Before mowing
20 Sep 2018 - After mowing
23 Apr 2019 - Land masking
12 Jul 2019 - Before mowing
26 Aug 2019 2019 Aug 12(AOI: 10, 11, reference); 20(AOI:5, 9) After mowing
20 Apr 2020 - Land masking
18 Jul 2020 - No mowing
01 Sep 2020 - No mowing
06 Sep 2020 - No mowing

Table 2. Performance of reed bed classification using seven thresholding algorithms for WAVI (top) and NDWI (bottom).
Parameter Otsu RenyiEntropy Yen Triangle Iso Li Mean

AUC all 0.67 ± 0.12 0.72 ± 0.14 0.70 ± 0.13 0.64 ± 0.19 0.59 ± 0.12 0.59 ± 0.13 0.65 ± 0.19
Sensitivity all 0.34 ± 0.23 0.45 ± 0.28 0.40 ± 0.25 0.95 ± 0.07 0.74 ± 0.35 0.77 ± 0.31 0.95 ± 0.07
Specificity all 1.00 ± 0.00 0.99 ± 0.02 0.99 ± 0.02 0.33 ± 0.43 0.45 ± 0.50 0.41 ± 0.51 0.34 ± 0.43
AUC all 0.71 ± 0.14 0.70 ± 0.14 0.76 ± 0.12 0.75 ± 0.17 0.74 ± 0.17 0.73 ± 0.17 0.64 ± 0.16
Sensitivity all 0.42 ± 0.27 0.54 ± 0.29 0.53 ± 0.23 0.86 ± 0.19 0.83 ± 0.14 0.84 ± 0.13 0.70 ± 0.26
Specificity all 0.99 ± 0.02 0.97 ± 0.06 0.98 ± 0.06 0.43 ± 0.47 0.63 ± 0.42 0.65 ± 0.42 0.69 ± 0.44

Performance was measured by mean (±standard deviation) area under the curve (AUC), sensitivity and specificity.
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algorithm (Otsu, 1979) and the class representing the 
land was masked for further analysis. 

NDVI ¼
RrsNIR � RrsRed
RrsNIR þ RrsRed

(1) 

where RrsRed is remote sensing reflectance in a red 
satellite band and RrsNIR is remote sensing reflectance 
in the NIR satellite band.

Step 2: masking water. The most complicated task 
is to find the optimal threshold (Carabias, 2012) that 
accurately masks water and leaves only aquatic vege-
tation. For this, two indices were tested, which 
demonstrated the highest potential in particular 

over aquatic vegetation (Villa et al., 2014, May): 
Normalised Difference Water Index (NDWI) and 
Water Adjusted Vegetation Index (WAVI). NDWI 
(Eq. 2) utilizes remote sensing reflectance in the 
green and NIR spectral regions that were corre-
sponded by Band 3 and Band 8 in the case of 
Sentinel-2/MSI data (McFeeters, 2013), and WAVI 
(Eq. 3) utilizes remote sensing reflectance in the blue 
and NIR spectral regions that are corresponded by 
Band 2 and Band 8 in case of Sentinel-2/MSI data: 

NDWI ¼
RrsGreen � RrsNIR
RrsGreen þ RrsNIR

(2) 

Figure 2. Workflow of remote-sensing data processing, validation and analysis. Step 1- masking land; step 2 - masking water; step 
3 - validation of reed bed areas and density with UAV data; step 4 - extracting data in considered AOIs; step 5 - assessment of the 
changes in the area covered by common reed and their density.
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WAVI ¼
RrsNIR � RrsBlue

RrsNIR þ RrsBlue þ L
(3) 

where RrsGreen is remote sensing reflectance in 
a green satellite band, RrsBlue is remote sensing reflec-
tance in a blue satellite band, and RrsNIR is remote 
sensing reflectance in the NIR satellite band. L is the 
WAVI background correction factor.

For the WAVI background correction factor L, 
a single value of 0.5 was used, which is the best option 
in the case where no a priori data about vegetation 
density is available, as suggested by Huete (1988), and 
confirmed by other studies (Qi et al., 1994; Rondeaux 
et al., 1996).

NDWI and WAVI indices were selected consider-
ing the band spatial resolution in Sentinel-2/MSI 
images, as both of them use bands (blue, green and 
NIR) that have 10 m spatial resolution. NDAVI was 
not used as it uses the same bands as WAVI, which is 
better adjusted for the water environment (Guanhua 
Zhou et al., 2018).

Both indices (WAVI and NDWI) were automati-
cally classified into water and reeds using seven binary 
thresholding algorithms, selected out of 16 available in 
Fiji software (Schindelin et al., 2012), after visually 
inspecting two images (17 July 2018 and 
26 August 2019 used for validation with UAV ortho-
photos) with calculated indices, using function try all. 
Seven thresholding algorithms were left for further 
analysis: Otsu (1979), Yen et al. (1995), 
RenyiEntropy (Kapur et al., 1985), Triangle (Zack 
et al., 1977), Mean and Iso (T. W. Ridler and 
S. Calvard, 1978). The simplest example of these algo-
rithms would be the mean thresholding (Eq. 4) where 
the threshold is calculated by the mean of two peak 
values of an image histogram. 

t ¼
gpeak1 þ gpeak2

2
(4) 

where t is the threshold value, gpeak1 is the first max-
imum value in a histogram, and gpeak2 is the second 
maximum value in a histogram. Sezgin and Sankur 
(2004) described 40 thresholding techniques under 
unified notation and grouped these thresholding algo-
rithms according to information they are exploiting 
from an image histogram: shape, measurement space 
clustering, entropy, object attributes, spatial correla-
tion and local grey-lever surface. According to this 
classification, Otsu, Mean and Iso are defined as clus-
tering thresholding algorithms, Yen and RenyiEntropy 
as entropy thresholding algorithms and Triangle as 
a geometric thresholding algorithm.

Step 3: validation of reed bed areas with UAV data. 
Two satellite images were used for validation: 
17 July 2018 and 26 August 2019. The most suitable 
index with a threshold was selected after validation with 
12 UAV orthophotos. Polygons of 10 m2 from 

orthophotos were classified as vegetation or water and 
compared to overlapping pixels of reed beds derived from 
satellite data (step 2). The accuracy of satellite-derived 
reed beds was assessed by the means of a confusion 
matrix (Ting, 2017), where the true positive and negative 
values indicated the number of matches between, respec-
tively, presence and absence of reed beds derived from the 
UAV and satellite data (i.e. observed and predicted reed 
beds). From the confusion matrix, the Area Under the 
Curve (AUC; Egan, 1975) together with sensitivity and 
specificity was calculated to determine the most accurate 
approach for reed bed area mapping using satellite ima-
gery. Sensitivity shows how accurately the true (vegeta-
tion) class was predicted, and specificity shows how well 
the false class (water) was predicted, whereas the AUC 
estimate covers both aspects. The thresholding algorithm 
was considered suitable, if the value for sensitivity and 
specificity was equal to or higher than the arbitrary value 
of 0.5, meaning correct classification was achieved for 
50% of the data. After rejecting unsuitable thresholding 
algorithms, the post-hoc Bonferroni test was used on 
AUC values to test which method, using indices 
(WAVI or NDWI) together with the thresholding algo-
rithm, performed the best at masking water and leaving 
aquatic vegetation.

To find whether at a certain density thresholding 
algorithm becomes unreliable, the confusion matrix of 
the best performing Sentinel-2/MSI index with thresh-
olding algorithm was tested again (using the same 
accuracy metrics) considering each vegetation density 
(low, medium, high) derived from the UAV ortho-
photos. To reduce the likelihood of type one error, the 
multiple comparisons Dunnett’s post hoc test was 
used to compare the mean AUC of the treatment 
group (each vegetation density) to a control group 
(AUC value of 0.5), representing poor discrimination 
between classes (Mandrekar, 2010).

Step 4: validation of reed bed density with UAV 
data. The estimated density values of reed beds in 
AOIs were retrieved from Sentinel-2/MSI data using 
WAVI (Villa et al., 2014, May). The performance of 
WAVI was validated with the density visually deter-
mined from UAV orthophoto and classified polygons 
(see Sect 2.2). From WAVI values, averaged over each 
class of vegetation in percentages and including water 
class, linear regression was derived and linear regres-
sion function was used to convert WAVI values to 
estimated density values.

Step 5: assessment of the impact of reed mowing. The 
effect of reed bed mowing was evaluated in each AOI, 
comparing satellite-derived and classified (with the most 
accurate index and threshold algorithm) areas covered by 
reeds before and after mowing during the 
corresponding year (2016–2020). The differences in 
areas were classified according to three aspects: lost area 
(reed bed areas decreased), remaining area (reed bed 
areas have not changed) and gained area (reed bed 
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areas increased). The analysis was performed using 
a zonal statistic in QGIS version 3.16 (QGIS.org, 2022, 
2022). Results are presented in hectares as well as in 
percentages relative to each AOI size, considering it to 
be 100% (Figure 1). To find whether mowing occurred in 
an AOI, an arbitrary threshold of 0.1 ha vegetated area 
(equal to one Sentinel-2/MSI pixel (10 m2) together with 
a buffer of surrounding pixels combined) was considered 
significant.

Results

Validation of water and vegetation indices for 
reed bed area determination

Results from confusion matrices comparing vegetation 
areas (reed beds) calculated from WAVI and NDWI 
indices in each AOI to vegetation areas derived from 
UAV orthophoto (see Table 1. UAV data) showed that 
five thresholding algorithms (Triangle, Iso, Li, Mean for 
WAVI and Triangle for NDWI) incorrectly identified 
water as a vegetated area in more than 50% (specificity 
lower than 0.5) of the cases (Table 2). The rest of the 
thresholding algorithms showed a larger than 0.5 speci-
ficity rate (correct distinction of water for more than 50% 
of data), while the sensitivity (correct distinction of 
macrophytes for more than 50% of data) of the four 
thresholding algorithms (Otsu, RenyiEntropy, Yen for 
WAVI and Otsu for NDWI) were lower than 0.5. 
Therefore, previously mentioned thresholding algo-
rithms were removed from further analysis, and only 
five thresholding algorithms for the NDWI index 
(RenyiEntropy, Yen, Iso, Li and Mean) were compared.

The Yen thresholding algorithm for the NDWI 
index had the highest mean AUC (Table 2); however, 
using the Dunnett post hoc test it was not statistically 

different (p > 0.05) compared to the other threshold-
ing algorithms. The mean specificity obtained by the 
Iso, Li and Mean was 30% lower than the one deter-
mined by the RenyiEntropy and Yen, which resulted 
in many false-positive values in one of the validation 
images (Figure 3). Consequently, the RenyiEntropy 
and Yen thresholding algorithms were selected and 
compared with each other. The mean AUC and spe-
cificity of RenyiEntropy were slightly lower than the 
Yen thresholding algorithm, therefore the Yen thresh-
olding algorithm was selected as the final method for 
classification between vegetated area and water.

The Dunnett post hoc test showed greater values 
for high (df(43) = 5.78, p < 0.05) and medium (df(43)  
= 4.30, p < 0.05) vegetation density AUC, compared to 
the AUC value of 0.5 that indicates no discrimination 
between classes (Mandrekar, 2010). No significant 
difference (df(43) = 2.12, p = 0.1) was found when 
comparing the same AUC value of 0.5 to the AUC of 
low-density vegetation. The mean specificity for all 
densities was similar and was higher than 0.97 (see 
Figure 4). For high and medium vegetation density, 
the mean sensitivity values were higher than 0.5 and 
therefore reliable; whereas, for low vegetation density, 
the sensitivity was <0.5.

The changes in vegetated area induced by reed 
mowing

The changes in estimated reed bed area in all AOIs 
during the whole period of study were diverse; never-
theless, significant changes in the vegetated area 
derived from the satellite images acquired before and 
after mowing were evident (Figure 5(a)). The reed bed 
area in the reference AOI did not significantly change 

Figure 3. NDWI index (derived from Sentinel-2 image acquired on 17 July 2018) with Li threshold showing overestimation of reed 
beds in the open lake part (a), and with Yen thresholding showing the distribution of reed beds with no overestimation (b).
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in 2016 and 2017; however, the vegetated area signifi-
cantly increased (>0.32 ha) in later years, i.e. 2018, 
2019 and 2020.

Similar patterns as in the reference AOI were 
observed in AOI 9 where the reed bed area increased 
significantly in the same years. The most evident 
decrease in the vegetation area was observed in AOI 
4 during the years, when the mowing was performed, 
while the increase in the vegetated area was observed 
in the reference years (2016 and 2020). The vegetated 
area decreased in AOI 5 by a significant amount in 
2018 (0.40 ha) and 2019 (0.70 ha); however, it 
increased significantly (1.07 ha) in the first year of 
mowing 2017. The largest one-time loss throughout 
the study was in AOI 13, where the vegetated area was 
reduced by half of its area (0.79 ha) in the first year of 

mowing and remained relatively small through the 
rest of the years. In 2020, when the mowing was not 
performed, the vegetated area recovered in all AOIs.

The reduction of reed bed areas in the reference 
AOI was observed in two investigated years, in 2016 it 
decreased by 3.1% of the total area of AOI, and in 2017 
by 2.9% (Figure 5(b)). In 2017, the loss of reed bed 
area is relatively low in comparison with the reduced 
vegetation area in other AOIs (on average 19.9 ±  
14.8%). The remaining vegetation area was relatively 
stable over the studied period in the reference AOI 
with an average of 38.7 ± 3.9% of the total area of AOI 
(Figure 5(c)). A gradual increase of the gained vegeta-
tion area in the reference AOI was determined starting 
from the first study year, when it was 0.08 ha (1.6% of 
the total area), to 2019, when gained vegetated area 

Figure 4. Mean area under the curve (AUC), sensitivity and specificity using Yen thresholding for NDWI, considering different 
densities of vegetation derived from the UAV data.

Figure 5. Estimated reed bed areas (ha) in 8 AOIs derived from sentinel-2/MSI images after removal of water pixels determined by 
the Yen thresholding algorithm for NDWI (a). The estimated reed bed areas (ha) that were reduced (b), remained (c) and gained (d) 
during the study years. Scale is different for each parameter to highlight specific cases of change. Significant (> 0.1 ha) vegetation 
area or change is highlighted in bold.
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comprised 0.84 ha, i.e. 16.3% of the total area, and 
2020 with 0.83 ha of gained vegetated area, i.e. 16.1% 
of the total area (Figure 5(d)).

In AOI 4, the most evident reduction of the vege-
tated area was observed in 2017, 2018 and 2019, i.e. the 
investigated years, when the mowing of reed beds was 
performed (Figure 5(b)). The reduced area accounted 
for 0.61 ha (43.5% of the total AOI area), in 2018 it was 
0.38 (27.1% of the total AOI area), while in 2019 the 
reduced vegetated area was 46.4% of the total AOI 
area. The remaining vegetation in AOI 4 was the 
largest in 2016 at 1.2 ha (85.6% of the total AOI area) 
as well as significant areas remained in 2017 at 0.26 ha 
(18.5% of the total AOI area).

In AOI 5, the reduced vegetation area followed 
a similar pattern as in the reference AOI in the first 
reference year of 2016 reducing by 0.18 ha and in the 
first mowing year of 2017 reducing by 0.08 ha (2.9% 
and 1.3%, respectively). In the following two mowing 
years of 2018 and 2019, reduced vegetation areas 
were highest in AOI 5 of 0.41 ha (6.6%) and 0.81 ha 
(13.1%), respectively. As this AOI is one of the lar-
gest, the remaining vegetation was significant in all 
years, with the lowest being in 2018 and 2020 at 1.2  
ha (19.2% of the total AOI area) and the largest in 
2016 at 2.7 ha (31.0%). Gained vegetation area was 
significant during most of the study years except for 
2018 when gained vegetation area was only 0.01  
ha (0.2%).

In AOI 9, reduced vegetation area was low with 
the only change being in 2017 of 0.08 ha (24.7% of 
the total AOI area). The remaining vegetation area 
was only significant in 2016 with 0.25 ha (77.1%). 
Gained vegetation area for most mowed AOIs was 
not different from reference AOI (p > 0.5) except 
for AOI 9 with 32.1 ± 14.9%, which was signifi-
cantly different (df(5) = 3.9, p < 0.01) from refer-
ence AOI that averaged 8.6 ± 7.1%. In AOI 9 
gained vegetation was significant with 0.16 ha 
(49.3% of the total AOI area) in 2016 and 0.12 ha 
(37.0%) in 2019 and 2020.

AOI 10 reduced vegetation area only in mowing 
years; however, this reduced area was not significant, 
with 0.04 ha (11.7%) in 2017 and 0.05 ha (14.6%) in 
2018 and 2019. The remaining vegetation area was 
significant in 2016 and 2017 with 0.23 ha (67.3%) 
and 0.15 ha (43.9%), respectively. Gained vegetation 
area was only significant in 2020 with 0.22 ha (64.4% 
of the total AOI area).

A significant reduction of vegetation area in AOI 11 
was observed in 2019 of 0.12 ha (8.4% of the total AOI 
area). The remaining vegetation area was significant in 
all years ranging from 0.27 ha (18.9%) in 2017 to 0.76  
ha (53.2%) in 2016, but comparing the mean remain-
ing vegetation area in AOI 11 (31.9 ± 13.2%) to refer-
ence AOI that also had significant remaining 
vegetation in all years, it did not significantly (df(5)  

= −2.78, p = 0.025) differ from the mean (38.7 ± 3.9%) 
in the reference AOI.

AOI 12 reduced in vegetation area significantly in 
2017 with 0.2 ha (20.1% of the total AOI area). This 
AOI had a significant remaining area in most of the 
years except for 2017 when it was 0.08 ha (8.0%). AOI 
12 gained significant vegetation area in reference years 
with 0.13 ha (13.0%) in 2016 and the same amount in 
2020 in 2019 with 0.11 ha (11.0%).

AOI 13 had one of the biggest reduced vegetation 
areas during a single year of 0.8 ha (31.7%) in 2017, 
and also in 2019 this AOI reduced a significant vegeta-
tion area by 0.19 ha (7.5%). The remaining area varia-
tion in AOI 13 was small 6.3 ± 3.1% compared to its 
area, but the data is missing in 2016 when the highest 
remaining vegetation was in all other mowed AOIs. 
Gained vegetation area was observed in 2020 of 0.38  
ha (15.0%).

In the reference years, average reduced vegetation 
area was significantly (df(35) = −6.3, p < 0.01) lower 
(0.8 ± 1.1%) than in years when mowing was per-
formed (14.7 ± 13.0%). In the same years, the remain-
ing vegetation was higher (35.5 ± 28.6%) than in 
mowing years (18.3 ± 11.6%) with a significant differ-
ence (df(35) = 3.46, p < 0.01). The average gained 
vegetation area of all AOIs were highly influenced by 
vegetation gained in 2020 (the year after mowing was 
completed) where the average of all AOIs was signifi-
cantly (df(21)= −5.2, p < 0.01) higher 30.4 ± 18.8% 
(0.69 ± 0.74 ha) compared to 2017 of 7.2 ± 6.8%, 2018 
of 11.8 ± 16.9% and 2019 10.7 ± 12.5%.

Temporal changes in reed density

The averaged WAVI values were highly correlated 
with the emergent vegetation density (r = 0.99, p <  
0.05) derived from the UAV data. As WAVI could 
be considered as a proxy for reed density, the derived 
linear regression function (Figure 6) was used to con-
vert WAVI values to relative coverage of reeds. 
According to the linear regression function, the values 
below 0.04 were considered as water (0% vegetation) 
and any value over 0.22 was considered as fully cov-
ered by reeds (100% vegetation).

Comparing individual AOI vegetation density 
values to the reference AOI, AOI 13 corresponded 
almost to a similar density in 2017 and was lower in 
2018 (Figure 7). None of the mowed AOIs had an 
average estimated vegetation densities as high as the 
reference AOI 84.6 ± 30.1% (p < .05) except for AOI 5 
where the difference was not significantly different (p  
> .05) and the estimated vegetation density average 
was 72.7 ± 24.6%. The second-largest reed density 
was in AOI 11 with 54.8 ± 19.4%. The lowest estimated 
vegetation density was in AOI 9 of 23.0 ± 18.7%, this 
AOI is also the smallest in size.
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Nonetheless, comparing before and after mowing 
estimated vegetation densities, a significant difference 
in average change (Figure 7(b)) was found in years 
2016 with vegetation density being higher by 36.2 ±  
19.2%, lower in 2018 by −17.9 ± 11.3% and higher 
again in 2019 by 28.0 ± 21.1%; however, significant (df 

(7) = 0.43, p > 0.05) change was not found in the first 
mowing year with an average of −1.8 ± 26.4% lower in 
the vegetation density, and the reference year 2020 lower 
on average by −12.0 ± 35.1% (df(7) = 0.2, p > 0.05).

Even though the lower vegetation densities were in 
2018 when the smallest vegetation areas were 

Figure 6. The relationship between the reed bed density (0%, 25%, 50%, 100%) estimated from the UAV images and averaged 
WAVI values. The regression line is provided with 95% confidence intervals.

Figure 7. The reed density values in percentages of 8 AOIs (a) estimated from WAVI values retrieved from sentinel-2/MSI images 
that represent the period before and after mowing of the investigated years. Density differences in each year before and after reed 
growth season (b).
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determined (Figure 5(a)), no relationship (r = .05, p  
> .05) was observed between the change in the vege-
tated area (Figure 5) and estimated vegetation densi-
ties (Figure 7(a)), and as well no relationship (r = .05, 
p > .05) was found comparing only AOIs where the 
significant loss or gain in the vegetation area occurred 
(Figure 5 bolded values).

Discussion

The remote sensing of the vegetated area by 
reeds: methodological considerations

The workflow in this study is based on the concept 
that remote sensing can evaluate areas of reeds in the 
whole lake, as it is fairly simple to delineate between 
water and dense vegetation as well as mask the land 
from the water environment. Methods of masking all 
pixels automatically that were not related to aquatic 
vegetation, were chosen as this approach does not 
require any prior measurements, whereas most other 
similar studies (Bresciani et al., 2009; Powell et al.,  
2014; Villa et al., 2013) relied on in situ data for 
thresholding.

In general, remote sensing for vegetation area eva-
luation showed a good correlation between UAV- 
derived vegetation and dense vegetation detected 
from a satellite. Nonetheless, one satellite image (17 
of July 2019) that was used for validation with UAV 
images had a low intra-class variance due to a cloud 
haze (Figure 3(b)) that was not corrected by Sen2Cor 
atmospheric correction (Gao & Li, 2012; Richter et al.,  
2011). This could have an influence on the final results 
of this image classification by some algorithms 
(Triangle, Iso, Mean, and Li) and also on density 
values that do not match area results (area decreased 
but density increased). For this reason, it is important 
to thoroughly inspect images before using them for 
classification or testing other atmospheric correction 
algorithms that are available for Sentinel-2, e.g. iCOR 
(De Keukelaere et al., 2018), ATCOR (Schläpfer & 
Richter, 2014), ACOLITE (Martins et al., 2017). In 
this image, the water area appeared more similar to 
vegetated areas, and the unvegetated shallow bottom 
was classified as the background, which shows that 
binary thresholding should be chosen carefully and 
might not be the best option for classifying areas in 
some cases; therefore, more sophisticated algorithms 
such as clustering or artificial neural network-based 
segmentation could be tested that might improve 
results (Singh et al., 2020; Zheng & Chen, 2021).

Overall, results from the study demonstrated that 
the mowing effect can be detected from the EO data, 
especially in mowed AOIs larger than 0.1 ha, where 
the reduced area was significantly different from the 
reference AOI, and also the reduced vegetation area 
was significantly higher in the mowing years. 

Vegetated areas derived from the satellite images 
were slightly underestimated compared to the areas 
delineated by UAV orthophotos. These small differ-
ences might be due to high spatial resolution differ-
ences between orthophotos 2 cm/pixel and Sentinel-2/ 
MSI 10 m/pixel (Bollas et al., 2021). Another reason 
for the underestimation was that low-density vegeta-
tion was included in a total estimation of vegetation 
area, which did not reach a reliable AUC threshold as 
low-density vegetation had lower index values, mak-
ing overall discrimination between water and aquatic 
vegetation poorer. For better water vegetation detec-
tion, it is suggested to implement a short-wave infra-
red (SWIR) band that has significantly different 
reflections comparing aquatic vegetation and cyano-
bacteria (Oyama et al., 2015). Modified normalized 
difference water index (MNDWI) implements SWIR 
band to water index calculations and is claimed to 
reach better results than NDWI (Xu, 2005) as well as 
Sentinel-2 Water Index (SWI) that showed higher 
classification accuracy than NDWI (Jiang et al.,  
2020). Even though these indices showed good poten-
tial to distinguish between water and vegetation, the 
SWIR band has to be resampled from 20 to 10 m 
resolution to match other bands in indices, and look-
ing at smaller scales, as in this study, can lead to 
misclassifications.

The reed beds with a density of ≥50% were proven 
to be classified more accurately (50–85%) than reed 
beds with a density of 25% (31% accuracy). Therefore, 
the tested approach of reed bed delineation in this 
study is only suggested to use for the densest reed 
beds, which may lead to an underestimation of 15%. 
The highest estimated vegetation density was in AOI 5 
and the reference AOI throughout the study period. 
The reason for this might be that this is the only AOI 
(5th) where different cutting methods were applied; 
nonetheless, this area still gives a signal to satellite 
images and pixels were counted as vegetated areas. In 
general, a higher estimated vegetation density (WAVI 
higher by 0.02 on average) was detected after mowing 
at the end of the vegetation season since the reeds 
reach their physiological maturity at the end of 
August (Villa et al., 2013).

Practical use of the results in waterbody 
management

A method using Yen thresholding on the NDWI index 
applied to Sentinel-2 images showed good results in 
the separation of water from reed beds, therefore it is 
recommended to use as a tool for evaluating area 
change during mowing works in waterbodies. 
Although the accuracy for determining the density is 
not sufficient, especially when it comes to medium- 
and low-density classes, having reference AOIs with 
100% density allows for a robust way to assess the 
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effect of mowing, follow the recovery, and plan mow-
ing works accordingly.

The management program of 2017–2019 showed 
a significant reduction of reed bed areas compared to 
reference years, meaning successful nutrient removal 
from the lake environment. The gained vegetation 
area was significantly higher in the year after mowing 
ended; suggesting that the reed bed areas will recover 
over time and mowing will have to be repeated after 
a few years.

In 2018 and 2019, the reduced vegetated area was 
still higher compared to the reference years but lower 
than in the first year (2017) of mowing. This could be 
explained by the fact that vegetation still had not fully 
recovered from the first year of mowing, and as sug-
gested by Derr (2008), the reed regrowth rate the 
next year after mowing could be reduced by approxi-
mately 55% if no herbicide is applied. The recovery of 
reed beds after mowing works implies that it has to be 
performed continuously (Ailstock et al., 2001; Asaeda 
et al., 2006; Derr, 2008).

Macrophyte monitoring is commonly performed 
every 3 years (e.g. EPA Ireland and EPA Illinois) 
along several transects, where macrophyte relative 
abundance is estimated in situ. The tested method in 
this study allows monitoring of reed bed hotspots in 
the whole lake area and not just mowed AOIs; there-
fore, remote sensing techniques can provide 
a synoptic, more frequent in time view over a wide 
range of ecosystems and are very cost-effective in 
monitoring changes. Frequent satellite image data 
allow choosing the correct time of mowing as it is 
crucial to get information on the timescale for all 
reed stands since different lakes require optimal con-
ditions for mowing depending on the end goal of lake 
management whether it would be to reduce reed 
aboveground biomass or remove nutrients from the 
lake (Fogli et al., 2014).

This approach could be used for the long-term 
(retrospective) analysis of aquatic vegetation 
dynamics, by adding, for example, the Landsat satellite 
series. The retrospective analysis could allow the indi-
cation of the areas in a lake that continuously had 
higher vegetation areas and densities, and where new 
mowing areas could be selected for better manage-
ment of the lake environment. However, before 
using other satellite datasets, testing of the workflow 
presented in the study should be done first, as they 
might have different spectral, spatial and radiometric 
resolutions than Sentinel-2.

It is common to use in situ observations as valida-
tion data for satellite images (Lawley et al., 2016), 
although popularity grows on using UAV data for 
validation, which is relatively accurate and covers 
a relatively larger area (Kattenborn et al., 2019). 
UAV flights could be conducted by mowing personnel 
or lake manager, while the use of a structure from 

motion allows the high accuracy of above ground 
biomass (Meneses et al., 2018).

Conclusion

After analysis, the presented method using Yen binary 
thresholding on NDWI index calculated from 
Sentinel-2/MSI images is proposed, as it had the best 
performance. The conclusion is as follows: (1) 
Suggested method is suitable for medium and dense 
reed beds; (2) A larger reduction in reed bed areas was 
detected during the period of mowing; (3) Results 
showed a strong correlation between WAVI and 
visually evaluated reed densities; (4) No correlation 
was detected between estimated vegetation densities 
and vegetation area changes in mowing period.

It is hard to monitor vegetation just from satellite 
images alone because many variables can skew the 
results. Our workflow is recommended to use this 
method as an additional one to in situ measurement. 
It is relatively quick and covers large areas to evaluate 
the effectiveness of reed and other emergent macro-
phytes mowing in waterbodies.

By using the developed approach, it would be pos-
sible to evaluate the mowing effect also without prior 
knowledge of when and where the mowing was per-
formed. In such cases, a longer period, e.g. covering the 
entire vegetation season or evaluation of several years, 
should be considered. Time series of relatively frequent 
satellite images, combining data originating from dif-
ferent optical sensors, or synergistic use of optical and 
active microwave remote sensing data (Anderson et al.,  
2021), would also be an advantage. However, a primary 
understanding of vegetation temporal dynamics, phe-
nology and relation with environmental conditions, 
like air temperature and precipitation, is highly impor-
tant. This additional information and sufficient time 
series of satellite images would allow the detection of 
intra-seasonal changes in coverage or density, less 
related to a natural environmental impact, but with 
a mowing performed.

In addition, UAVs could also be used for the robust 
estimation of the above-ground biomass of reeds after 
the calibration with additional reed height data collected 
in the field (Lu et al., 2022). Several studies have already 
proved that the estimation of biomass from reed beds 
could also be performed using satellite images (Jabłońska 
et al., 2021; Luo et al., 2017). In this way, this information 
would support the estimation of how much nutrients 
could be removed by mowing, how much biomass can be 
further used for bioenergy heating or as a green con-
struction material (Sluis et al., 2013), and therefore sig-
nificantly contribute to the management objectives.
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Abstract: This study investigates the application of unoccupied aerial vehicles (UAVs) equipped with
a Micasense RedEdge-MX multispectral camera for the estimation of Secchi depth (SD) in inland
water bodies. The research analyzed and compared five sun-glint correction methodologies—Hedley,
Goodman, Lyzenga, Joyce, and threshold-removed glint—to model the SD values derived from
UAV multispectral imagery, highlighting the role of reflectance accuracy and algorithmic precision
in SD modeling. While Goodman’s method showed a higher correlation (0.92) with in situ SD
measurements, Hedley’s method exhibited the smallest average deviation (0.65 m), suggesting its
potential in water resource management, environmental monitoring, and ecological modeling. The
study also underscored the quasi-analytical algorithm (QAA) potential in estimating SD due to its
flexibility to process data from various sensors without requiring in situ measurements, offering
scalability for large-scale water quality surveys. The accuracy of SD measures calculated using QAA
was related to variability in water constituents of colored dissolved organic matter and the solar
zenith angle. A practical workflow for SD acquisition using UAVs and multispectral data is proposed
for monitoring inland water bodies.

Keywords: UAVs; Secchi depth; multispectral imagery; sun glint; quasi-analytical algorithm;
remote sensing

1. Introduction

Secchi depth (SD), an essential measure of water transparency in aquatic ecosystems,
provides a critical indication of water quality and ecological health [1–3]. In Europe, SD
is important for following the water quality rules set by the European Water Framework
Directive (WFD), which mandates member states to uphold ecological standards [4]. SD
thus helps identify impairments affecting water quality and aids in devising and executing
management plans to protect water bodies [5].

The Secchi disk is the main tool used for obtaining SD measurements, particularly in
vast and complex aquatic ecosystems [6–8]. However, traditional methods—visual obser-
vations using a white Secchi disk—can be labor-intensive, time-consuming, and potentially
influenced by observer bias [9,10]. They also typically offer point-level measurements,
which may not reflect water transparency over larger areas [11,12].

The limitations of traditional methods have spurred interest in remote sensing tech-
niques for estimating SD in complex aquatic ecosystems. Techniques ranging from satellite
data to unoccupied aerial vehicles (UAVs) equipped with light detection and ranging
(LiDAR) systems and hyperspectral imagery have been explored for accuracy [13]. These
techniques promise cost-effective and efficient high-resolution spatial data on water trans-
parency over large areas, with multispectral imagery from UAVs emerging as a promising
alternative [14].

UAVs can provide higher-resolution images than satellites, allowing for more precise
measurements of water bodies, including small and shallow ponds [15,16], which are
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often not well captured by satellite imagery [16,17]. Furthermore, UAVs can be flown
at a specific time and location, which is particularly important for SD measurements,
as the measurement of water transparency can be influenced by various environmental
factors, such as partial cloud cover, water turbidity, and the angle of the sun [18,19].
Although weather conditions influence the ability of UAV flight (with Inspire 2 UAV if
winds exceed around 10 m/s), UAVs can collect data during fully cloudy conditions, where
optical satellite data are heavily affected by clouds. Additionally, they can be equipped
with diverse sensors for capturing multispectral or hyperspectral images, thus providing
valuable data on water quality and ecology [14,20]. Furthermore, UAVs can serve as ground
truth to validate satellite data [21,22], thereby enhancing accuracy for the monitored area,
e.g., one tile coverage of Sentinel-2 can reach from 100,000 ha, while UAVs cannot cover
relatively large areas. Moreover, UAV technology presents a strategic advantage in regions
where conventional methodologies struggle due to logistical complications.

SD is primarily influenced by three optical components: Chl-a, colored dissolved
organic matter (CDOM), and total suspended matter (TSM) [23,24]. Different wavelengths
of light penetrate water bodies to different extents. For instance, blue light can penetrate
deeper into clear waters than green or red light. Conversely, in more turbid waters, red
and near-infrared (NIR) light is absorbed more rapidly and scatters quickly, leading to a
diminished signal at the surface. Hence, the spectral signatures captured by remote sensors
are significantly influenced by the composition and clarity of the water body.

Various algorithms exist to calculate water parameters from multispectral data, includ-
ing mechanistic models [25], artificial neural networks [26], and regression algorithms [27].
Each offers unique advantages and applicability, depending on the specific characteristics
of the data and the aquatic ecosystem under study. For instance, a study by Chusnah and
Chu [28] demonstrated the application of machine learning in estimating Chl-a concen-
trations, which are commonly used as indicators for assessing the trophic level of lakes
and the state of water quality. The study utilized machine learning to implement a band
ratio algorithm and generate Chl-a maps from Sentinel-2 and Sentinel-3 satellite images.
However, mechanistic models, relying on physical laws and principles to simulate light
attenuation and scattering processes in water, often provide the most reliable and accurate
predictions, particularly when dealing with smaller datasets, which would not be sufficient
for machine learning models [29].

Lee et al. [30] provided a foundational understanding of the optical properties influenc-
ing SD, which significantly contributed to the development of the quasi-analytical algorithm
(QAA) for more accurate and reliable water clarity estimations. The QAA, a commonly
used mechanistic model for SD, has been utilized in various water bodies [29,31,32]. It has
been applied to MODIS and MERIS satellite data, where it reduced the root-mean-square
error (RMSE) of SD estimation from 1.5 m to 1.0 m. Furthermore, the QAA has been used to
account for the residual error in reflectance data from MODIS satellite data, demonstrating
its potential for remote sensing in monitoring and managing water resources [33]. The algo-
rithm showed excellent results (R2 = 0.96, MAPD = 0.18) when validated with independent
measurements covering oceanic, coastal, and lake waters [34]. However, previous studies
have not delved into the potential benefits of utilizing multispectral cameras onboard UAVs
in combination with the QAA algorithm. The integration of these cameras with UAVs
offers potential improvements in spatial resolution and data availability, bridging the gap
between in situ and satellite remote sensing measurements [18].

It is important to accurately account for reflected light from the water surface—more
specifically, the sun-glint effect—as it can lead to inaccuracies in further processing of water
quality algorithms [18,35,36]. The simplest way of avoiding sun glint is careful UAV flight
time and direction planning; however, since the water surface is often uneven, it is hard to
reduce sun glint completely [37]. There are several methods of reducing the sun-glint effect
in multispectral UAV images during postprocessing, for example, M Muslim et al. [36]
tested four methods proposed by Lyzenga et al. [38], Joyce [39], Hedley et al. [40], and
Goodman et al. [41] and applied them to either the whole image or just the glinted area.
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Other studies used the methods of Hochberg et al. [42], removing glinted pixels as NIR
threshold or using HydroLight simulations [18]. The application of these methods should
align with the specific requirements of the study. For instance, if the primary objective
entails bottom mapping, the method proposed by Lyzenga offers superior results, as
demonstrated in M Muslim’s et al. [36] study. On the other hand, if the analysis is focused
on assessing surface water quality parameters, the Hedley method emerged as the preferred
choice by Windle and Silsbe [18]. Thus, the selection of sun-glint correction techniques
requires careful consideration of the objectives, ensuring the most effective and accurate
outcomes in different scenarios.

By yielding accurate, timely, and spatially inclusive data on water transparency, UAVs
equip decision-makers with invaluable resources, necessitating immediate intervention or
remediation measures. This is particularly evident when we consider the capabilities of
UAVs for mapping vast areas. A single UAV flight, which takes approximately 25 min, can
effectively map an area as large as 25 ha.

This research aimed to evaluate the effectiveness of QAA for the determination of SD
using multispectral cameras onboard UAVs. It was performed by testing QAA on image
datasets preprocessed using five different methods of sun-glint correction. Additionally,
the study examined how water constituents and solar zenith angle affected the discrepancy
between actual and modeled SD values. We hypothesize that the radiometric accuracy of a
calibrated UAS sensor should meet the required accuracy of 5%, expected with ocean color
remote sensing, when compared to in situ measures of Hooker et al. [43] and application of
sun-glint correction methods will improve usability in SD modeling, by deviation of RMSD
of the same 5% from in situ measures, which would still provide practical results for water
quality assessment.

2. Materials and Methods

The study was performed in 43 water bodies in Lithuania (Figure 1), represented by
high variability and proportion of optically active in-water components—turbidity, Chl-a
and CDOM (Supplementary Table S1)—thus bolstering the robustness and generalizability
of the findings. The research was conducted from May 2021 to May 2023.
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Figure 1. (a) Study area with indicated study sites. (b) Pair plot between in situ parameters, measured
in the areas of interest. The diagonal plots show kernel density estimations for each parameter,
offering a smoothed representation of the distribution of data values. ID numbers in pair plots
represent the lake number after the name in the map with n = 43.

2.1. UAV Data Collection and Calibration

An Inspire 2 UAV equipped with a RedEdge-MX camera was used to facilitate
the acquisition of data [44]. The camera features five bands: blue (475 nm ± 16 nm),
green (560 nm ± 13 nm), red (668 nm ± 8 nm), red edge (717 nm ± 6 nm), and NIR
(842 nm ± 28 nm). To ensure optimal image capture, the UAV was flown at a height of
60 m to optimize the balance between spatial resolution and the area covered in each
image, allowing for both relatively high-resolution imagery (from 3 to 4 cm/pixel) and a
reasonable area coverage per flight (around 40–50 m2), with the camera programmed to
capture images every three seconds. This frequency was necessitated by the inability to
view the live feed and capture images in desired areas from the Micasense RedEdge-MX
camera at a distance. The maximum distance between the SD measurement site, where
GPS coordinates were recorded, and the image GPS coordinates were approximately 40 m,
while the minimum distance was 0 when the measurement was above the boat. For the
majority of water bodies, a single measurement site was selected in alignment with the
methods of the Environmental Protection Agency of Lithuania. However, for a few larger
water bodies, two sampling points were obtained for a more comprehensive understanding.
The operation of the UAV was coordinated by two individuals: one controlling the UAV
from the shore and the other onboard a boat, both communicating via phone during the
Secchi disk measurements. The onboard operator also concurrently measured other water
quality parameters outlined in Section 2.2.

For image calibration, the original Micasense RedEdge calibration panel was used.
In accordance with Micasense’s guidelines, a calibration panel image was captured at
the shore before and after each flight, ensuring no shadows were cast on the reference
panel or drone [44]. Three images were taken each time for assurance. Furthermore, the
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Downwelling Light Sensor (DLS2) provides real-time, continuous measurements of the
ambient light conditions during the flight, ensuring that the images captured are properly
calibrated regardless of changes in the lighting environment.

2.2. In Situ Data

Concurrently with the UAV image capturing, in situ SD measurements were performed
using a 30 cm white Secchi disk, a widely accepted method for assessing water transparency
in lakes, rivers, and oceans [45].

The parameters of CDOM—the light-absorbing component of dissolved organic matter,
Chl-a (an indicator of phytoplankton biomass), and turbidity (a measure of the cloudiness
or haziness of water)—were measured alongside SD to assess their potential influence on
water transparency. Parameters were only measured in areas where SD was lower than the
depth of the specific point being assessed.

Water samples for Chl-a measurements were filtered through glass fiber GF/F filters
with a nominal pore size of 0.7 µm and extracted into 90% acetone. Photosynthetic pig-
ments were measured spectrophotometrically and estimated according to the trichromatic
method [46,47]. CDOM was measured spectrophotometrically after filtration through
0.22 µm membrane filters. The CDOM absorption coefficient at 440 nm was derived ac-
cording to Kirk [48]. A Shimadzu UV-2600 spectrophotometer was used for the analysis
of Chl-a and CDOM. Turbidity was measured with a portable turbidity meter (Eutech
InstrumentsTN-100, Landsmeer, The Netherlands) in the Nephelometric Turbidity Unit
(NTU). The instrument has a light-emitting diode in the near-infrared range (Hach Lange
at 860 nm and Eutech Instruments at 850 nm), and the detector measures the scatter at a
90◦ angle. This method is based on International Organization for Standardization (ISO) 7027.

In situ remote sensing reflectance Rrs was acquired to validate wavelengths from
UAV observations of water surface reflectance. Rrs was measured in the spectral range
of 400–800 nm by simultaneous measurements of downwelling irradiance, upwelling
radiance, and downwelling radiance, performed with a WISP-3 spectroradiometer [49]. Rrs
was calculated according to Equation (1):

Rrs =
Lu–ρLd

Ed
. (1)

where Lu is the upwelling radiance, Ld the downwelling radiance, Ed the downwelling
irradiance, and ρ a water surface reflectance factor equal to 0.028.

Central wavelengths of the Rededge MX camera were used (475 nm, 560 nm, 668 nm,
717 nm, 842 nm). NIR data were excluded from comparison with in situ reflectance, which
was not measured at 842 nm; however, NIR was still used for the sun-glint correction step
Section 2.4.

2.3. Preprocessing the UAV Data

The collected UAV images underwent preprocessing of correcting atmospheric effects
and standardizing the format suitable for analysis (Figure 2). The conversion of raw images
to radiance involves several corrective steps to eliminate biases and errors, accounting
for dark-pixel offset, vignette effect, as well as aligning images due to distances between
sensors, which could potentially affect the accuracy and reliability of the data. These steps
were achieved using the Micasense Python (version 3.7, Python Software Foundation, 2018)
workflow, mainly the function raw_image_to_radiance, as described in the Micasense
Github repository for users [44].
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Since reflectance is relatively independent of illumination conditions [11,50], it is
preferred for calculating SD using remote sensing images. The conversion of radiance to
reflectance was performed using a reference panel of known reflectance to determine a
scale factor between radiance and reflectance. This scale factor was applied to the entire
image to obtain a reflectance image. The accuracy of the reflectance image was verified by
extracting and checking the same reflectance panel region used to calculate the scale factor
for any trends or inconsistencies [44].

Reflectance was further normalized by dividing it by π, assuming water as a Lamber-
tian body, following the mathematical model (2).

Reflected radiance = ρ × (cos θ_i)/π (2)

Here, cos θ_i represents the cosine of the angle between the incident light and the
surface normal and ρ–a surface reflectance factor [50]. This normalization ensures that
the reflectance values fall within a standardized range (0 to 1), facilitating consistent com-
parisons and calculations across different surfaces, lighting conditions, and measurement
devices [51,52].

2.4. Image Masking and Sun-Glint Correction

From the initial set of water bodies, four were eliminated (Tūbausių Reservoir, Grabu-
ostas Lake, Ilgis Lake, and Mušėjus Lake) from further analysis. One was excluded due to
excessive cloud glint, while the other three measurements were performed too close to the
shore or contained emerged macrophytes, leaving no sufficient area where the reflectance
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would not be affected (Figure 3a). One water body (Kruminių Reservoir) was surveyed at
late in the day, when the zenith angle was approximately 80 degrees, resulting in shadows
covering half the area; however, the unshaded area was able to be used for the analyses
(Figure 3b), removing the shadowed area using binary thresholding. In total, 39 water
bodies were left for statistical analysis after discarding unsuitable ones.
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Figure 3. (a) RGB of an image affected by shadows, bottom reflectance and floating macrophytes
after thresholding (Grabuostas Lake), (b) RGB of contaminated image (Kruminių Reservoir) with
shadow and shore, but where values can still be used by selecting an area (red square) that was good,
(c) RGB example of a relatively good image (Musia Lake) before removing sun glint and boat.

To ensure accurate SD measurements, objects (boats, coast, macrophytes) and shadows
potentially affecting the measurements’ accuracy were removed. Firstly, the normalized
difference water index (NDWI) was calculated to distinguish between water and non-water
pixels (3). This index was then classified into binary parts using Yen thresholding [53,54],
where non-water pixels were masked as NaN values. Yen method was used also on just
the NIR band to classify areas where pixels were affected by sun glint and masked as NaN
in one of the sun-glint removal tests. This sun-glint removal method was later called the
threshold-removed glint method.

NDWI =
RrsGreen – RrsNir
RrsGreen + RrsNir

(3)

In 11 images, water waves caused a substantial amount of sun glint (Figure 4a), despite
images being captured early in the morning around 10 a.m. GMT+3, when the sun reflection
from calm water should not have reached the lens. Therefore, the sun-glint correction
was performed using the algorithms developed by Hedley et al. [40], Goodman et al. [41],
Lyzenga et al. [38], and Joyce [39], which assume that the water surface reflectance is a



135

Publications

Drones 2023, 7, 546 8 of 22

linear combination of water reflectance and sun-glint reflectance. The models were fitted
using a set of training data consisting of image pixels where sun glint was absent, calculated
from an area with 10% lowest value NIR pixels [18]. The model was then used to predict
water reflectance for sun-glint-affected pixels, reducing reflectance values according to
Equations (4)–(7).
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Figure 4. (a) RGB image before the sun-glint correction. (b) Deglinted RGB image using Hedley’s
method. (c) Threshold-removed sun-glint area from NDWI image, recalculated to SD; black areas
represent removed values. (d) The boat removed from NDWI using Yen’s threshold and recalculated
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The Hedley method (4) calculates the remote sensing reflectance (Rrs) for each pixel in
each band. The method first finds the minimum NIR value and then calculates the slope
for each band using linear regression. The Lyzenga and Joyce methods ((5) and (6)) are
similar to the Hedley method, but use the mean and mode, respectively, of the lowest 10%
of NIR values instead of the minimum NIR value. The Goodman method (7) calculates the
Rrs for each pixel in each band using a constant A (0.000019) and a factor B (0.1) that is
multiplied by the difference between the red and NIR bands:

Hedley Rrsλ = λ + biλ × (NIR − NIRmin) (4)

Lyzenga Rrsλ = λ + bijλ × (NIR − NIRmean) (5)

Joyce Rrsλ = λ + biλ × (NIR − NIRmode) (6)

Goodman Rrsλ = λ − NIR + δ, where δ = A + B × (Redλ − NIRλ) (7)
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where λ is the band of interest (blue, green, red, red edge, NIR), biλ is the slope of the band,
bijλ is equal to covariance between λ and NIR divided by variance in NIR, and NIRmin,
NIRmode, and NIRmean are the minimum, mode, and mean NIR values, respectively. For
Goodman’s method, δ is a constant offset across all wavelengths where A and B are
constants (A = 0.000019 and B = 0.1). Additionally, removing only sun-glint-affected areas
(determined by the binary thresholding Yen algorithm) was compared as an alternative
approach to sun-glint correction methods (Figure 4c).

The images of four water bodies (Vembutų, Stebuliškių, Pakapės, and Krūminių
reservoirs) were also affected by either shore or cloud-glint artefacts. However, most of
these artefacts were successfully removed using binary thresholding, except for one image
(Figure 3b) where the area had to be manually chosen because the thresholding method
was unable to accurately separate the unwanted areas.

2.5. Secchi Depth Model

The quasi-analytical algorithm (QAA) proposed by Lee et al. [30] provides a robust
framework for monitoring SD (8), particularly in scenarios where in situ measurements
may be unavailable. Compared to the empirical approach, this semianalytical method
offers a significant advantage: it does not necessitate the recalibration of the retrieval
algorithm with in situ data [31]. This enhances its utility in diverse settings. As such, it was
considered more suitable for monitoring SD in various water bodies.

Lee et al. [30] introduced a mechanistic model that accounts for the effects of light
attenuation, scattering, and reflection in the water column, as well as the properties of
the Secchi disk itself, in determining the SD. The parameters that determine SD in this
algorithm are the total absorption coefficient ‘a and the total backscattering coefficient ‘bb.
From these parameters, the diffuse attenuation coefficient Kd was calculated, which is the
main variable in the SD formula, besides the Rrs band:

KT_Kd =
1.04 ∗ (1 + 5.4u)0.5

1/
(

1 − sin(θ)2

RI2

)0.5 . (8)

SD =
1

kt_kd ∗ minKd
ln
(

0.14 − minRrs
0.013

)
(9)

where minKd is the minimum value of Kd chosen from Kd calculated with blue, green and
red bands and minRrs is the above-surface remote sensing reflectance of the band that had
the lowest Kd value. Kt_Kd is the upwelling radiance diffuse attenuation coefficient and
was used instead of a constant value of 1.5 as suggested by Jiang et al. [31], where θ is the
solar zenith angle, RI is the refractive index value of water equal to 1.33 and u denotes the
ratio of backscattering coefficient to the sum of absorption and backscattering coefficient.

The sun zenith angle was computed from in situ measurements using the time and
location of the observation. This information was then used to calculate the solar position
using the Python library pytz [55]. This approach provided a reliable means of determining
the solar zenith angle, which is an important parameter in applications related to SD
acquisition from Rrs.

Selecting the appropriate reference wavelength is of major importance for the final SD
value [34]. The green band (560 nm) was used as a reference if the red band Rrs (668 nm)
was <0.0015 sr−1. Otherwise, the red band (668 nm) was used, with accordingly modified
calculations of other parameters, as suggested by Lee et al [30].

SD was calculated using the QAA method for images of 6 types: corrected after Hedley,
Lyzenga, Joyce and Goodman sun-glint algorithms, threshold-removed images and images
with no correction.
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2.6. Validation and Interpretation of Results

All of the final modeled SD values and reflectance images were averaged to ensure that
images could be compared with in situ data. Pearson correlation coefficients were calculated
to assess multicollinearity between the reflectance values of different wavelengths. The
final reflectances obtained after applying various correction methods and no correction
(Sections 2.3 and 2.4) were validated with in situ reflectances (WISP-3). The accuracy of
these methods was evaluated by bias (9), while the root-mean-square deviation (RMSD)
was used as an indicator of the QAA model’s precision (10), and the Pearson’s correlation
coefficient (r) described the relationship strength between the model’s output and the real
data values.

Bias =
1
N ∑N

i=1(Xestimated,i − Xmeasured,i) (10)

RMSD =

√
∑N

i=1(Xestimated,i − Xmeasured,i)
2

N
(11)

The same accuracy and precision measures were applied to modeled SD values.
Generalized additive models (GAMs) were employed [56] to investigate the relationships
between the difference in modeled and in situ SD (the response variable) and a set of
independent variables: CDOM, Chl-a, turbidity, and solar zenith. The GAMs were chosen
due to their flexibility in modeling nonlinear relationships and their ability to handle
interactions between predictors. The GAMs were utilized using R programing language
with the mgcv [57] library for statistical parameters and ggplot2 [58] library for visualization.
Before analysis, the cross-correlation (based on the Pearson correlation coefficient) between
the independent variables was determined. The correlation was relatively high (r = 0.76)
between Chl-a and turbidity; therefore, turbidity was not included in the GAMs. Before the
interpretation of the GAM results, the residuals were visually inspected with diagnostic
plots for normality and equal variance against the fitted values. F and p values were
obtained to assess the relative importance and significance of the independent variables
(p < 0.05 was considered a statistically significant relationship). The fit of the model was
evaluated using the explained deviance. A response plot was graphically represented to
visualize the relationship between an explanatory variable and the response. As there
were multiple predictors, each one was plotted separately with a smooth curve and the
confidence interval of the effect.

To visualize the SD results, a subset of images with calculated SD values were exported
as TIFF and mosaiced according to image metadata GPS coordinates in QGIS version
3.16 [59]. The result was then visualized on top of the RGB mosaic that was mosaiced using
OpenDroneMap [60] photogrammetry software.

3. Results
3.1. Band Validation after Sun-Glint Correction

Across all correction methods and the in situ data, the green band (560 nm) consistently
showed the peak mean value, while the blue band (475 nm) indicated the valley or lowest
mean value. The general shape of the data appears to peak at the green band, with
decreasing values on either side at the blue and red bands (668 nm), and a slight increase at
the red edge band (717 nm). This pattern was consistent across all the correction methods
and the in situ data, indicating the robustness of this spectral feature in the multispectral
UAV image data. In terms of multicollinearity, the green and red exhibited the strongest
correlation of 0.97, closely followed by correlations between the green and red edge at 0.96
and the red and red edge at 0.95. The blue band also exhibited strong multicollinearity
with the other bands: 0.97 with green, 0.94 with red and 0.91 with red edge.

The highest mean values across all bands were observed with the Lyzenga correction
method, while the lowest was observed with the Goodman correction method (Figure 5).
The in situ values were generally lower than the corrected values, except for the Goodman
correction method.
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Figure 5. Spectral scatterplots demonstrating the agreement between in situ measured and sun-glint-
corrected (or not corrected) reflectances in the UAV images. Statistics (r, RMSD, bias) and points are
color-coded accordingly, except for the red edge, which is gray. A diagonal black line marks perfect
agreement (1:1).

Removing the two outlier points, one from green and one from the red edge band,
decreases r values and the r mean becomes similar to the red bands. However, it also
decreases RMSD and bias for these bands, thus not decreasing the accuracy of the data.

The validation results provided robust evidence regarding the performance of the
correction methods and the reliability of the final reflectance values. The correlation for
all methods (Figure 6) had the same trend, where it was the lowest for the blue band
(r = 0.38 ± 0.12) as well as for the red band (r = 0.56 ± 0.14), but higher for the green band
(r = 0.75 ± 0.11) and red edge band (r = 0.80 ± 0.10). However, RMSD was relatively low
for the blue band (RMSD = 0.0043 ± 0.0016) and red (RMSD = 0.0048 ± 0.0018) bands and
slightly higher for the green (RMSD = 0.0060 ± 0.0013) and red edge (RMSD = 0.0053 ± 0.0014)
bands. Bias for most methods followed a similar trend of larger underestimation for the blue
band and green bands, then slight overestimation for the red band with Goodman, Hedley
and threshold-removed glint methods, but still undervaluation for other methods, and
slightly lower undervaluation for the red edge band. Goodman’s method was exceptional
to these trends, as green, red and red edge bands were overestimated.
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Overall, Goodman’s algorithm showed the highest correlation for the green and red
edge bands, with r values of 0.90 and 0.92, respectively. However, it had low r values for
the blue and red bands, with 0.32 and 0.71, respectively. The RMSD values for Goodman
were relatively low across all bands, ranging from 0.002 to 0.005. Similarly, the Hedley
algorithm consistently performed well across all bands, with r values ranging from 0.58 to
0.88. The RMSD values were similar to those of Goodman, ranging from 0.003 to 0.005.

The Joyce and Lyzenga algorithms showed matching performances, with lower
r values and higher RMSD and bias values compared to Goodman and Hedley. The
r values ranged from 0.27 to 0.69 for Joyce and from 0.26 to 0.67 for Lyzenga. The RMSD
values ranged from 0.006 to 0.007 for both algorithms.

The control group with no correction applied showed moderate r values, ranging from
0.41 to 0.81. The RMSD values were similar to those of Goodman and Hedley, ranging from
0.005 to 0.006.

3.2. Validation of QAA SD Model

The performance of the QAA model’s (Figure 7) ability to predict SD when compared
with in situ measurements showed a relatively high correlation across all methods, with
r ranging from 0.74 (threshold-removed glint) to 0.92 (Hedley glint correction). RMSD
(from 0.65 to 1.05 m) and bias (from −0.78 to 0.58 m) showed acceptable results for all
methods as well.

Comparing methods between themselves, the accuracy of all parameters had similar
trends as accuracy for band comparison with in situ measurements (Section 2.1), where the
SD values were overestimated for the smaller SD values and underestimated for the larger
ones, except for Goodman’s method, where most of the SD values were overestimated.

Hedley’s sun-glint-corrected images achieved the best results according to the RMSD
measures (0.65 m), while r was just slightly smaller (0.91) than with Goodman’s method
(0.92), which achieved the best results based on the r value of 0.92. However, the RMSD
value for Goodman’s method was relatively high (1.00 m) compared to the values of other
methods. This method overestimated most of the values for both small and large SD values.

The Joyce and Lyzenga methods showed similar results between themselves with r
values of 0.87 and 0.85, respectively. The RMSD values for Joyce and Lyzenga were 0.79
and 0.86 m, respectively, and biases showed underestimation.

The worst-performing method was when only sun-glint-affected pixels were removed
and all other pixels were left unchanged (r = 0.75, RMDS = 1.05 m, bias = 0.13 m). The
control group with no correction showed slightly better results: r value of 0.89, RMSD
value of 0.74 m and underestimation according to bias.
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3.3. Relation with Water Constituents

The average in situ SD of the lakes was 1.91 ± 1.53 m (±standard deviation), ranging
from a minimum of 0.25 to a maximum of 7.2 m. The mean CDOM was 2.95 ± 3.2 m−1

(min–max: 0.37–20.01 m−1), the mean Chl-a concentration 26.59 ± 26.48 (1.13–113.23) and
the mean turbidity 6.76 ± 11.8 NTU (0.00–70.62 NTU).

The environmental factors in GAMs significantly explained (38.3%) the variance in the
difference in SD measurements. The interaction term of the sun zenith angle and CDOM
was significant (F = 6.808, p-value < 0.05), suggesting that these factors together affect the
accuracy of SD retrieval (Figure 8). The most important and statistically significant factor
was CDOM (F = 10.47, p < 0.05), followed by the solar zenith (F = 4.84, p = 0.02). Chl-a
values did not have a significant effect on the GAM model (F = 0.295, p = 0.59).
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and graphs for each independent environmental factor: (a) solar zenith (b) CDOM (c) Chl-a and
(d) interaction plot of solar zenith angle. CDOM and predicted difference plane between in situ and
modeled SD (m). The red dashed lines show a 95% confidence interval for fitted lines.

In the residual plots of the model a random scatter of points was observed (Figure 9),
with no discernible pattern or trend. This scatter indicates that the residuals have a constant
variance, which suggests homoscedasticity. The absence of any systematic structure or
pattern in the residuals reinforces the notion that nonlinear relationships assumed by our
model are an adequate representation of this dataset. Additionally, we did not identify any
significant outliers that could unduly influence our model’s predictions.

The modeled SD values were overestimated (to over 1.3 m) when CDOM values were
<7.5 m−1, while underestimated (over 1 m) when CDOM was >7.5 (although underestima-
tion did not significantly change when CDOM > 12). For the solar zenith, the SD values
were overestimated (over 0.7 m) at the lower solar zenith angles (<45 degrees), and then
a relatively low effect (within ±0.5 m) was between 45 and 75 degrees of the solar zenith
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angle and the underestimation sharply increased to over 1.5 m when the solar zenith angle
was >75 degrees.
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4. Discussion
4.1. Advancements in SD Measurements

This research focused on evaluating the effectiveness of the QAA for determining SD
using a multispectral camera onboard UAVs. This novel approach expands the current
understanding of measuring SD by introducing the potential use of UAVs, balancing the
broad coverage provided by remote sensing methods with the high accuracy character-
istic of in situ measurements, thereby serving as a more comprehensive alternative to
traditional methods.

The experimental results did not uniformly support our hypothesis that the application
of sun-glint correction methods would enhance the utility of multispectral images in SD
modeling by reducing the RMSD by about 5% and reducing the bias by a similar amount.
The precision observed across all bands appears to correspond with the spectral band
reflectance intensity, where bands demonstrating relatively lower reflectance intensity
(e.g., blue band) typically displayed a lower compliance between the reflectance measured
from the UAV and the in situ reflectance measurements and the reverse held true for bands
with relatively higher reflectance intensity. Environmental factors such as weak water
surface signal and roughness of the water surface can introduce systematic and random
errors, respectively, into water surface detection [13]. The correlation with the blue was
identified as the least robust (Figure 7), which can be ascribed to increased vulnerability to
scattering, a trait inherent to these bands in the water environment [61].

Among the tested glint correction methods, the Hedley and Goodman methods
emerged as the most effective across all bands, with Hedley demonstrating the lowest
RMSD across all bands. For instance, a study conducted by M Muslim et al. [36] employed
a similar methodology to our study, testing multiple sun-glint correction methods. Their
findings indicated that the Lyzenga method yielded the most accurate results. However, it
is important to note that the primary objective of their research was to map coral reefs, and
in most of the study area, the bottom was visible, which may have influenced their results.
In contrast, Windle and Silsbe [18] found that the Hedley method provided the highest
correlation coefficient (r) and the lowest RMSD, corresponding closely with the results of
our study.

The key distinction between the three glint correction methods (excluding the Good-
man method) lies in the slope or covariance index of NIR band values. In the case of the Hed-
ley method, the slope was the largest, as it takes the minimum value of the band as the start-
ing point, as opposed to the mode (Joyce method) or the mean (Lyzenga method) [38–40].
This suggests that the images used in our study required a larger numeric correction due to
the lowest initial reflectance values.
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The results showed that the Goodman’s method reflectance intensity values tend to
be significantly different from other methods for the blue, red and red edge bands. This
method, which was ranked as the second-best-performing in our study, adopted a different
approach, using constant values to correct for the sun-glint effect [41]. This approach led to
overall better r values between in situ and the green, red, and red edge bands onboard the
UAV. However, the performance of the blue band was significantly lower than when using
the Hedley method. Despite this, the Goodman method demonstrated the lowest RMSD
values and small overestimation bias, underscoring its effectiveness in applications where
low reflectance intensity deviation from in situ radiometer is required.

The results also indicated that applying glint correction to the entire image rather than
just the binary thresholded area can yield better results in terms of the overall accuracy
of the reflectance values. This observation implies that the method of applying glint
correction solely to the binary thresholded area might not be the most effective strategy,
as it may overlook potential glint effects present beyond this area. Additional sun-glint
correction research should be considered in the future for better generalization of reflectance
correction [62].

The overall agreement between the in situ SD measurements and the modeled SD
values might be connected to their handling of in-water constituents such as colored
dissolved organic matter (CDOM) and solar zenith angles, which significantly influenced
the accuracy of the models. CDOM was found to predominantly influence the discrepancies
between in situ measurements and modeled SD. Given that CDOM primarily absorbs
light in the ultraviolet (UV) and blue regions of the spectrum, resulting in a relatively
low acquired signal by sensor [63], this agrees with our observation that the blue band
demonstrated one of the weakest correlations between in situ and UAV-derived reflectance
measurements [64]. It is plausible that Goodman’s and Hedley’s methods more effectively
managed this factor, where Hedley’s had the highest r and Goodman’s had the lowest
RMSD for blue band reflectance, resulting in a closer match with in situ values. Another
potential interference is bottom reflection, particularly in clear waters, where the difference
between the SD and the actual water depth is minimal. While the SD was consistently less
than the water body depth in our study, situations where this difference is minimal could
lead to bottom influences on the measurements.

Similarly, high solar zenith angles above 70◦ impacted the accuracy of modeled SD,
leading to underestimations by up to 1.5 m. This is likely due to increased scattering
and absorption of light at higher zenith angles, resulting in less light reaching the water’s
surface and thus larger differences between modeled and in situ SD values [65]. This
reinforces the need for sophisticated algorithms that can accurately model these complex
environmental factors in SD predictions.

4.2. Practical Applications

Accurate SD determination in large areas is particularly important given the increasing
demand for high-resolution data on water transparency for applications including water
resource management, environmental monitoring, and ecological modeling [66]. Measures
of SD can reduce the need for boat measurements in lakes, also allowing for data collection
at a higher frequency, surpassing traditional monthly monitoring intervals that may be
inadequate for dynamic water bodies with recurring algal blooms, which in some cases can
be inaccessible due to terrain or vegetation around the lake [67]. UAVs could also be used
in shallow coastal waters (<1.5 m), where a research vessel usually cannot access them,
e.g., in the Curonian Lagoon [68].

The optimal fit model using Hedley sun-glint correction on the whole image was
used to construct a mosaic from 45 individual images (Figure 10) of Kašučių Lake on
20 September 2021. All of the pixels were left unmasked to show how shadows affect the
final results, and therefore this aspect should be taken into consideration while planning
the acquisitions.
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color represents in situ SD of 4.3 m.

This example shows the efficacy of the QAA best-fit model in transforming discrete
data into a coherent, large-scale representation of SD. The SD varied from 4 to 6 m, where
the highest values were determined in the areas covered by tree shadows. Elsewhere, SD
values were more homogeneous (4.0 to 4.8 m), but some noise was still apparent in the
orthomosaic (snow-like effect), as SD values are calculated for each pixel. For this reason,
the mean value of the whole image was compared to in situ measurements in the area,
instead of selecting a small square or point in the images, which would have resulted in
lower accuracies.

This method has potential applications in shaping policies and regulations related to
water bodies. With the methods provided in this paper, processing workflow for one 5 ha
lake should not take longer than 20 min. Moreover, this process can be fully automated,
requiring only the supervision of the final results. To put this into context, Lithuania has
around 6000 lakes, and about 340 of them are larger than 5 ha [69], which would be suitable
for monitoring using a Sentinel-2 satellite, assuming that the shape is not elongated. The
rest of the smaller lakes could be monitored by applying methodology from this study
and potentially could improve the accuracy and coverage of current national monitoring
conducted by the Environmental Protection Agency, which currently covers around 80 lakes
every 6 years in Lithuania.

4.3. Future Research and Potential Limitations

The QAA model possesses the flexibility to process remote sensing data sourced
from an array of sensors, including but not limited to MODIS, MERIS, OLCI, MSI and
GOCI. By integrating a more diverse set of global in situ measurements corresponding to
various water types, it is conceivable to further refine the precision and effectiveness of the
QAA model.

While the research results demonstrate potential, it is essential to emphasize that the
investigation was conducted across a broad range of unique aquatic environments and
included measurements captured under variable sun zenith angles. Consequently, for
future work, there is potential to modify the existing QAA used for SD estimations to
better account for CDOM and sun zenith angle, which in this study have been shown to be
critical parameters. This modification could improve our understanding and predictions in
the context of diverse and changeable aquatic conditions. Several limitations need to be
addressed in future research. One of the main limitations is the assumption of linearity in
the Hedley method. This method requires at least one dark pixel unaffected by glint [40] to
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be visible in the image, and if the whole image is affected by glint, this deglinting method
will provide incorrect data. Understanding these limitations aids in contextualizing the
results and fosters the development of more refined glint correction methodologies in the
future. This is also relevant for a partial cloud glint when clouds are reflected from the
water surface in some, but not all areas of the image, for the analysis of multispectral
drone imagery [40,70]. Most methodological studies on water surface mapping using UAVs
suggest careful planning of flight time, preferably during conditions of clear skies and
low sun glint [37]; however, this restricts one of the main advantages of UAVs—obtaining
data on demand—especially if there is a need to visit several inland water bodies on the
same day.

Many studies underscore the importance of choosing the appropriate quasi-analytical
algorithm (QAA) for different optical water types [13,29,34]. The optical properties of
coastal and inland waters, which are primarily influenced by the concentrations of sus-
pended particulate matter, phytoplankton, and dissolved organic material, exhibit spa-
tial and temporal variability, leading to diverse optical water types [71,72]. Applying a
universal algorithm in these optically complex waters often results in significant uncer-
tainties [71,72]. This insight highlights the importance of optical water classification to
enhance retrieval accuracy, as indicated by numerous studies that developed class-specific
algorithms for bio-optical parameters and achieved improvements by applying optical
classification in the retrieval of these parameters [72–75]. In our study, relatively high
concentrations of CDOM significantly affected the optical properties of the water, thereby
introducing uncertainties in the results. One possible approach to improve the accuracy of
the QAA is to calibrate the algorithm for the CDOM-dominated water bodies.

In addition to the aforementioned limitations, another significant challenge to con-
sider is the interference of high-vegetation pixels in the analysis of multispectral drone
imagery [76]. Vegetation and their shadows, especially when in close proximity to water
bodies, can skew the reflectance measurements and thus influence the accuracy of Secchi
depth estimates. Consequently, implementing strategies to exclude these pixels during
image analysis can enhance the reliability of the measurements.

The applicability of water parameters extends beyond SD, allowing for the calcula-
tion of additional parameters. Prior research has demonstrated the feasibility of employ-
ing multispectral UAVs for turbidity [77–79], Chl-a [77,79–81], CDOM [79], TSS [80,82],
cyanobacteria [80] and macrophytes [16,53,83]. Given the inherent scalability of the UAV-
based methodology, it stands as a promising tool for extensive SD assessments and water
quality surveys, thereby facilitating large-scale studies focused on water transparency. This
advancement brings us a step closer to exploiting the full potential of UAV-based remote
sensing for assessing and monitoring aquatic environments.

5. Conclusions

This study revealed that the accuracy of SD measurements is profoundly influenced
by sun-glint correction methods employed in UAV flights. There was a consistent agree-
ment across all methods and the in situ radiometric data, particularly for the green band,
emphasizing the robustness of multispectral UAV image data. Among the tested methods,
Hedley’s method demonstrated superior accuracy (RMSD = 0.65 m) and precision, thereby
significantly contributing to the accuracy of the UAV-derived SD data.

Moreover, findings underscored the significant role of environmental factors, particu-
larly the CDOM and solar zenith angle, causing inaccuracies in SD measurements: a solar
zenith angle > 70◦ resulted in an underestimation of up to 1.5 m in modeled SD, while
CDOM > 12 m−1 caused similar underestimations. Our research, therefore, supports the
use of UAVs equipped with multispectral cameras as a viable method for SD determination
in inland water bodies with SD of up to 7 m and lower than 12 m−1 CDOM. The results
point towards an approach capable of reaching a correlation as high as 0.91 and reduc-
ing the RMSD by up to 12.85% (Hedley’s method), thereby enhancing the versatility and
reliability of SD measurements.
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Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/drones7090546/s1. Table S1. Summary of investigated
lakes and reservoirs in Lithuania. Descriptive statistics of in situ-measured SD, chlorophyll-a, CDOM
and turbidity.
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U-Net Performance for Beach Wrack Segmentation: Effects of 
UAV Camera Bands, Height Measurements, and Spectral  
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Abstract: This study delves into the application of the U-Net convolutional neural network (CNN) 
model for beach wrack (BW) segmentation and monitoring in coastal environments using multi-
spectral imagery. Through the utilization of different input configurations, namely, “RGB”, “RGB 
and height”, “5 bands”, “5 bands and height”, and “Band ratio indices”, this research provides in-
sights into the optimal dataset combination for the U-Net model. The results indicate promising 
performance with the “RGB” combination, achieving a moderate Intersection over Union (IoU) of 
0.42 for BW and an overall accuracy of IoU = 0.59. However, challenges arise in the segmentation of 
potential BW, primarily attributed to the dynamics of light in aquatic environments. Factors such as 
sun glint, wave patterns, and turbidity also influenced model accuracy. Contrary to the hypothesis, 
integrating all spectral bands did not enhance the model’s efficacy, and adding height data acquired 
from UAVs decreased model precision in both RGB and multispectral scenarios. This study reaffirms 
the potential of U-Net CNNs for BW detection, emphasizing the suitability of the suggested method 
for deployment in diverse beach geomorphology, requiring no high-end computing resources, and 
thereby facilitating more accessible applications in coastal monitoring and management. 

Keywords: drone; photogrammetry; deep learning; multispectral camera; data combinations 
 

1. Introduction 
Beach wrack (BW), also known as shore algal deposits or marine debris, is an im-

portant component of coastal ecosystems that can provide various ecological, economic, 
and social benefits [1]. BW is often used as a habitat for a variety of organisms, such as 
birds and invertebrates, and can serve as a source of food and shelter for these organisms, 
as well as a source of nutrients for plants [2]. In addition, BW can play a role in protecting 
the shoreline from erosion and storm waves [3]. It also has economic value, as it can be 
used as a source of organic matter for soil enhancement and fertilization, and in some 
cases, can be converted into biogas, a renewable energy source [4]. BW also has cultural 
and recreational value, as it is often used in traditional practices such as amber collecting 
and can attract tourists to coastal areas [5]. However, the degradation of BW and the ac-
companying unpleasant odors may disrupt recreational activities and pose health risks 
due to the habitation of fecal bacteria, which may thrive in such environments [6]. 

A complex interplay of meteorological conditions influences the deposition of BW, 
particularly wave action and storm events. Hydrodynamic measurements have indicated 
that BW is mostly formed during high sea level and wave events [7]. Furthermore, the 
morphological evolution of foredunes, which can impact wrack deposition, is driven by 
wave energy [8]. Storms not only induce deposition but also cause erosion, affecting the 
equilibrium of beach gradients [9]. These factors collectively contribute to the marine–
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terrestrial transfer of BW, with significant ecological implications for nearshore environ-
ments. 

For the monitoring of BW, it is important to understand BW dynamics and the factors 
that influence its distribution and abundance [10]. However, the detection of BW can be 
challenging due to its variability in distribution and abundance, its accessibility, particu-
larly in remote or difficult-to-reach areas, and the limitations of traditional methods for 
mapping it [11,12]. The traditional methods for monitoring BW have been described as 
labor-intensive and reliant on manual field surveys. A study by Suursaar et al. [7] indicates 
that BW sampling can be considered a tool for describing the species composition of 
macrovegetation in near-coastal sea areas. This method involves the physical collection 
and analysis of BW samples, and while effective, it is subject to human error. Although 
variable in their applicability, empirical models offer another avenue for monitoring [13]. 
An integrated framework combining multiple techniques is advocated for comprehensive 
and effective management [14]. 

Advanced remote sensing methodologies such as aerial photography, satellite imag-
ing, and light detection and ranging (LiDAR) show potential in identifying BW [15]. 
Widely recognized spectral indices such as the normalized difference vegetation index 
(NDVI) and the normalized difference red edge index (NDRE) are pivotal in this domain, 
exploiting the reflectance attributes inherent to diverse vegetation classes [16]. Further-
more, object-oriented image analysis constitutes another robust strategy to delineate and 
spatially represent beach zones within the remotely sensed data [17]. 

According to Yao et al. [18], in many instances, unmanned aerial vehicle (UAV) re-
sults outperformed satellite-based techniques. A study by Pan et al. [15] demonstrated 
that RGB aerial imagery captured with UAVs could be segmented with up to 75% accuracy 
using machine learning algorithms such as K-nearest neighbor, support vector machine, 
and random forests. A subsequent study by the same authors employed a camera trap for 
the continuous monitoring of detached macrophytes deposited along shorelines, offering 
an efficient and pragmatic method for tracking ecological dynamics [19]. Concurrently, 
Karstens et al. [20] utilized supervised machine learning methods to map and segment 
images acquired with UAVs to predict the locations of BW accumulation. Despite these 
advancements, the studies mentioned limitations, particularly in the number of images 
utilized for both segmentation and validation, and an imbalanced sample size of classes. 
While these methods showed promise in terms of their transferability to other areas, they 
still require additional real-world applications for comprehensive evaluation. 

The efficacy of convolutional neural networks (CNNs) in segmenting remote sensing 
data is contingent on multiple variables, such as the nature and volume of image data. 
Several limitations to mapping BW should be considered when interpreting the segmen-
tation results. One limitation is the availability and quality of the remote sensing data, 
which may affect the accuracy and resolution of the BW segmentation. Equally significant 
is the choice of the CNN model and the accompanying image processing techniques; these 
parameters directly impact the reliability and accuracy of the results. While the CNN 
model and image processing techniques are central to achieving high accuracy, the object-
specific and environmental variables cannot be overlooked, as they may significantly af-
fect the results’ applicability across different locations and times; therefore, a careful se-
lection and optimization of data composition for training and ongoing monitoring are es-
sential for achieving reliable and generalizable outcomes [21]. Research by Lu et al. [22] 
demonstrated that multispectral images, particularly those with five bands (blue, green, 
red, red edge, and NIR), yielded accuracy levels comparable to hyperspectral images for 
vegetation mapping. Concurrently, a study by Wang et al. [23] enhanced landslide detec-
tion efficiency by integrating NDVI and near-infrared spectroscopy features, thereby aug-
menting four-band pre- and post-landslide images to create nine-band composite images. 

In the field of remote sensing, digital surface models (DSMs) have shown their utility 
in complex terrain mapping and analysis, specifically in the context of BW identification 
and monitoring. For example, Tomasello et al. [24] examined the utility of UAVs for both 
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the volume estimation and segmentation of BW through machine learning techniques, 
and endorsed this approach for future monitoring initiatives. Moreover, this height infor-
mation can be integrated with multispectral imagery captured by UAVs to increase the 
feature set for the CNN models, thereby enhancing segmentation accuracy for BW map-
ping. 

This study aims to evaluate the U-net model’s performance when using six distinct 
combinations of spectral and height data, to assess the BW area using multispectral im-
agery from UAV. Additionally, the study aims to compare the performance of this model 
across different areas of interest (AOIs), by proving the transferability of the model. This 
research utilizes an extensive dataset, comprising over 150 multispectral 5000-pixel square 
image tiles. We tested whether the U-Net model’s performance in distinguishing BW will 
not significantly differ across AOIs, thereby demonstrating the model’s transferability. We 
hypothesize that incorporating all available data (multispectral and height) would im-
prove the U-Net model’s performance for BW area detection. Also, we tested if the inclu-
sion of height data would have a measurable impact on the final results, contributing to a 
more comprehensive representation (i.e., volume) of the BW. This study will contribute 
towards creating a workflow that would not require high-end computing power for CNNs 
and can facilitate fast, accurate BW estimation without the need for many on-site visits. 

2. Materials and Methods 
2.1. Study Area 

The study area is located on the exposed coast of the southeastern Baltic Sea (Figure 
1). This region is subject to a wind fetch exceeding 200 km, and experiences average wave 
heights of ~2 m. However, during extreme storm events, wave heights can reach up to 6 
m [25]. Four areas of interest (AOIs) were selected along the Lithuanian coastline for mon-
itoring over a year from December 2020 to January 2022. These AOIs represent the four 
most visited and easily accessible beaches on the continental part of Lithuania. Distinct 
features, including the proximity to urban areas, the presence of shipping and tourism, 
dunes, and other coastal features, characterize each of these AOIs (Table 1). 

 
Figure 1. Area of interest (AOI) map and images from each one of the four areas, starting from top 
left and going to bottom right: Melnrage, Karkle, Palanga, Sventoji. 

Table 1. Description of AOIs according to different attributes. 

Attribute Melnrage Karkle Palanga Sventoji 
Proximity to urban 

area 
Close to the port city Far from urban areas Close to resort city Close to resort city 

Beach cleaning No No Frequently Frequently 

Coastal features Sand dunes 
Sand dunes, boulders, 

and clay cliffs 
Sand dunes Sand dunes 
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Reefs (hard substrate 
overgrown by macroal-

gae) 
Breakwater Natural reefs 

Natural reefs, groyne, 
and scaffoldings of pier 

Scaffoldings of pier 

Beach width by Jarma-
lavičius et al. [26] 

±45 m ±11 m ±76 m ±107 m 

Specifically, Melnrage is located in an area intensively used for shipping and is also 
close to Klaipeda—the largest city in the western Lithuanian region. Karkle beach is dis-
tinguished by the presence of boulders, favorable for the growth of algae, and is far from 
urban areas, surrounded by many trees; it is the narrowest of the four researched beaches 
with around 11 m in width [26]. Palanga beach, a popular tourist destination during the 
summer season, is often cleaned by the municipality, removing larger litter from the sand 
as well as BW. Sventoji, featuring a fishery port and a popular tourist destination, has the 
widest sandy beach of all AOIs, measuring around 107 m. All studied beaches have sand 
dunes, with Karkle beach also featuring clay cliffs. The total length of the beaches in the 
study area was approximately 39 km, with all coasts exposed to the Baltic Sea. 

The BW on the Lithuanian Baltic coast is primarily composed (85% of the total rela-
tive BW biomass) of perennial red algae (mainly Furcellaria lumbricalis and Vertebrata fu-
coides) while filamentous green algae (mainly Cladophora glomerata, C. rupestris) and brown 
algae (mainly Fucus vesiculosus and Sphacelaria arctica), respectively, comprise 14% and 1% 
of the total relative BW biomass [27]. Red algae species dominate on stony bottoms within 
depths of 3–16 m, while filamentous green algae densely cover stones in shallower depths 
(<6 m). Filamentous brown algae such as Sphacelaria arctica usually cover hard substrate 
in deeper parts (>9 m), while overgrowths of Pylaiella/Ectocarpus sp. can be found on nat-
ural and artificial hard substrates (boulders, piers, scaffoldings) at depths of 1–5 m [28]. 
Stands of Fucus vesiculosus have not been recorded on the hard bottom habitats along the 
south-eastern Baltic Sea coast, suggesting its transport from other more sheltered coastal 
areas. 

2.2. UAV-Based Remote Sensing of BW 
A DJI Inspire 2 multirotor UAV equipped with a MicaSense RedEdge-MX multispec-

tral (MicaSense Inc., Seattle, WA, USA) camera was used to acquire the images. The 
RedEdge-MX camera has 5 bands: Blue (475 nm ± 16 nm), Green (560 nm ± 13 nm), Red 
(668 nm ± 8 nm), Red edge (717 nm ± 6 nm), and Near-infrared (842 nm ± 28 nm), with 1.2 
MP each, and a 47.2° horizontal and 34.4° vertical field of view (micasense.com accessed 
on 30 October 2023). The RedEdge-MX, with its higher sensitivity (compared to conven-
tional RGB cameras) due to 16-bit image capture, was used for U-Net models. The 
RedEdge-MX also has additional bands and a global shutter that reduces the risk of 
blurred images. In addition to multispectral mosaics, RGB mosaics were acquired solely 
for BW heights, using Zenmuse X5S (DJI, Shenzhen, Guangdong, China) camera (see Sec-
tion 2.4). 

Flights were conducted approximately every 10 days at locations where BW was pre-
sent and under suitable weather conditions to ensure the quality of the data collected: 
wind gust speeds of less than 10 m/s, no precipitation, and temperatures above 0 °C (lower 
temperatures could shorten flight times due to battery performance limitations). If these 
conditions were not met, the nearest suitable day was chosen for the flight. A flight time 
was typically scheduled just after sunrise (between 6 am and 10 am local time) to reduce 
sun glint effects on the water and to minimize the presence of people on the beach, as 
flights must comply with European regulations prohibiting flying over crowds. The 
PIX4Dcapture app was used to plan the flights, with a flight height of 60 m. An additional 
buffer transect was also added to the flight plan to reduce distortions in the center of the 
final mosaics. 



155

Publications

Drones 2023, 7, x FOR PEER REVIEW 5 of 23 
 

The multispectral camera images had a ground sampling distance (GSD) of ~3.5 cm 
per pixel, while RGB camera images had a GSD of approximately 1.5 cm per pixel. The 
mosaics ranged from 0.20 to 1.70 km of beach length, depending on the size of the BW. 
For U-Net training, 29 multispectral images were mosaiced and partitioned into 163 tiles 
(Figure 2) of size 5000 × 5000. Out of 75 total flight missions, multispectral images con-
sisted of 7 in Melnrage, 4 in Karkle, 3 in Palanga, and 15 in Sventoji, while the rest were 
RGB images (see Section 2.4). 

 
Figure 2. Processing workflow for UAV images. Arrows represent image processing from one stage 
to another. Green squares represent the finished results. Processing workflow for UAV images, in-
cluding the data augmentation step employing rotations, flips, and other transformations to miti-
gate spatial location bias and enhance model robustness (see Section 2.3.2). 

The PIX4Dmapper 4.6.4 software was used to process the UAV images both from 
Zenmuse X5S and RedEdge-MX. This software was chosen for its ability to create high-
quality image mosaics and generate digital surface models (DSMs) and digital terrain 
models (DTMs), which are used for calculating the height of BW (see Section 2.4). The 
mosaics were georeferenced to a Lithuanian orthophoto map with a 0.5 m spatial resolu-
tion using QGIS georeferencing tools. At least three ground control points were chosen 
each time during the georeferencing process, selecting known objects that do not change 
location, ideally situated in the corners of the final UAV orthophoto. 
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2.3. Machine Learning Methods 
2.3.1. Labeling 

The multispectral images were mosaiced into three band image files for visual label-
ing, using the green, blue, and near-infrared bands. The final product of the labeling pro-
cess is a TIFF file with each pixel assigned to one of five classes: 0 for BW, 1 for potential 
beach wrack (that is still underwater), 2 for water, 3 for sand, and 4 for other objects (such 
as buildings, bushes, trees, wooden paths, etc.). It is worth noting that the image back-
ground, with a value of Nan, had a large number of pixels in all images, and these were 
labeled as “other”. The labeled images were then opened in ImageJ and exported as TIFF 
files. Classes were masked by experts, with the main goal of marking the areas of BW 
accumulations. In some cases, the labeling was done roughly, where BW was spread out 
in many pieces at a small scale (Figure 3). 

 
(a) (b) 

Figure 3. Example of manual labeling and its rough mask of BW in some areas at a pixel level, where 
(a) is a single red band with color pallet and (b) are the labeled areas of the same image. X and y 
coordinates show the locations of pixels (256 × 256) equal to around 8 m2. 

The accurate labeling of the mosaic tiles allows the U-Net CNN model to distinguish 
BW from other classes in the scene, such as sand, water, or other objects. It provides data 
against which the model’s predictions are evaluated, enabling the assessment of its effec-
tiveness in BW identification and quantification. Labeling was performed on orthomosaic 
tiles with a maximum size of 5000 by 5000 using the “Labkit” [29] plugin in ImageJ FIJI. 
This plugin uses traditional supervised machine learning to assist with labeling using 
given samples, which were manually reviewed, and any incorrect labels were corrected 
by an expert. The near-infrared band was particularly useful in distinguishing between 
small rocks and BW, which can be challenging to differentiate in RGB images, as BW con-
sists of algae that have chlorophyll-a, which is more reflective in the near-infrared band 
spectrum. 

2.3.2. Data Pre-Processing 
The model training was performed on a computer equipped with 32 GB RAM, an 

Intel Core i7 8th gen (Intel Corporation, Santa Clara, CA, USA) CPU, and an NVIDIA GTX 
1070 (NVIDIA Corporation, Santa Clara, CA, USA) GPU (8GB vRAM). To accommodate 
the memory constraints inherent to deep learning approaches, high-resolution tiles were 
partitioned into smaller 256 × 256 pixel segments. These reduced dimensions were suffi-
cient to maintain the visibility of the objects relevant to the study’s context. 

Out of 163 tiles generated from the partitioning, 17 were selected by expert judgment 
for inclusion in the model training set (Table 2). The selection aimed to include at least one 
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tile from each date and AOI, to ensure a comprehensive representation of all segmentation 
classes. 

Table 2. The partitioning of training data for the U-Net CNN model. Images corresponding to each 
AOI and date. Check marks (✓) indicate tile of AOI and data and multiple check marks (✓✓) show 
that multiple tiles were used from the same date and AOI. 

Date/AOI Melnrage Karkle Palanga Sventoji 
25 August 2021 ✓     ✓✓ 

8 September 2021       ✓ 
15 September 2021 ✓   ✓   
17 September 2021   ✓✓   ✓ 
22 September 2021 ✓     ✓ 
29 September 2021       ✓ 

1 October 2021       ✓ 
26 October 2021   ✓   ✓ 

4 March 2022 ✓       
22 March 2022       ✓ 

For basic image manipulation (merging, selecting bands, augmentation processes, 
etc.), Python with GDAL 3.4.3 [30] library was used. Six different combinations from mul-
tispectral data were used to train the final models to assess the impact of different data 
types on the model’s performance. The combinations included the use of RGB bands, RGB 
and heights, 5 bands, 5 bands and height, augmented, and the band ratio indices merged 
into one TIFF, and will each be detailed later in this section to explain their combination 
process. 

The indices included the normalized vegetation index (NDVI) (1), the normalized 
difference water index (NDWI) (2), and the normalized difference red edge index (NDRE) 
(3): 

NDVI = NIR−Red
NIR+Red (1) 

NDWI = Green−NIR
Green+NIR (2) 

NDRE = NIR−Red edge
NIR+Red edge (3) 

where each remote sensing reflectance (Rrs) band is represented by a band name. 
The choice of NDVI, NDWI, and NDRE over other indices was based on their specific 

spectral sensitivities relevant to BW identification. NDVI leverages red and NIR spectral 
bands, which are well established in vegetation studies, offer robust data on plant health 
[31,32], and are directly relevant to BW mapping, as it mostly consists of macroalgae. 
NDWI, which computes reflectance from the green and NIR spectral regions, helps dis-
tinguish water and land areas, and is useful in detecting potential underwater BW. NDWI 
is important in delineating water features and is crucial for identifying submerged or par-
tially submerged vegetation [33,34]. However, NDWI may be impacted by shadows and 
surface roughness, necessitating its use alongside other indices. Lastly, the NDRE index 
helps to measure the amount of chlorophyll-a in the plants, and it can also be used for 
biomass estimation [35], which is also related to BW and the amount of it. 

Data augmentation was undertaken as an exploratory measure to investigate poten-
tial spatial location bias related to class pixel locations within the dataset, rather than as a 
strategy for genuine model improvement. It was implemented solely on a single dataset 
that incorporated all spectral bands and the heights (see Section 2.4). Data augmentation 
was implemented by manipulating images through specific transformations: random ro-
tations of images at defined angles (0°, 90°, 180°, and 270°), and horizontal and vertical 
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flips, each with an equal probability of 50%. This methodological approach ensures a di-
verse dataset, enhancing the robustness of the subsequent analyses. 

2.3.3. U-Net Semantic Segmentation 
The U-Net architecture, introduced by Ronneberger et al. [36], was selected for this 

study due to its precision in localization and its ability to effectively handle smaller da-
tasets for complex image segmentation tasks. The distinguishing attribute of CNNs lies in 
their capacity to master spatial feature hierarchies, effected through the use of convolu-
tional strata that scrutinize the input image, consequently deploying filters to abstract fea-
tures across various scales. In this paper, a similar architecture (Figure 4) was used to the 
one described in the original U-Net paper, with the addition of extra layers for the multi-
spectral images and a reduced input image size. Also, padding and a dropout of 20% was 
used, which is a regularization technique that involves randomly dropping a certain per-
centage of the neurons in the model during training, which helps to prevent the model 
from becoming too complex and overfitting the training data [37]. 

 
Figure 4. U-Net architecture (modified from Ronneberger et al. [36]). 

The training itself was conducted in Python 3.9 using Keras version 2.3.1 [38] for 
model construction, with custom operations implemented in TensorFlow 2.1.0 [39]. The 
U-Net model was trained using a batch size of 16 patches (i.e., in each iteration of an epoch, 
16 images were processed together), as it was the maximum limit for the computing 
power used in this study. The training was set to run for 100 epochs, but an early stopping 
mechanism was implemented to prevent overfitting. The training was halted if the 
model’s performance did not improve after 6 consecutive epochs. This approach ensured 
that the model was not overtrained on the data, which could lead to a poor generalization 
of the testing data. The training models showed that all datasets around the first 20 epochs’ 
results improved the most (Figure 5) for validation and training loss. After the 20th epoch, 
training and validation loss still decreased, but at a slower pace, while validation loss did 
not improve near epoch 40. 
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Figure 5. Example of loss for training and validation over 100 epochs. The dataset used for this 
training was all 5 bands and height. 

The workflow for image segmentation began by assigning labeled TIFFs to the final 
pre-processed images. All classes were given equal weight, and the loss function was de-
fined as the combination of dice loss and focal loss. The dice loss measure [40] quantifies 
the overlap between classes on a scale from 0 to 1, with higher values indicating better 
performance. The focal loss [41] helps to address the issue of unbalanced class distribu-
tions by decreasing the contribution of well-trained pixels and focusing on poorly trained 
ones. 

To eliminate the edge effect when patching images, the Smoothly-Blend-Image-
Patches [42] package was used, which employs a U-Net for image segmentation and 
blends predicted patches smoothly through 2D interpolation between overlapping 
patches. 

2.4. BW Heights 
In addition to multispectral mosaics, 16 RGB mosaics were acquired for assessment 

of BW heights in Melnrage, 11 in Karkle, 6 in Palanga, and 13 in Sventoji using the 
Zenmuse X5S RGB camera that has an RGB lens with 20.8 MP and a 72° field of view 
(dji.com accessed on 30 October 2023). 

To validate the UAV-derived height of BW deposits, a total of 16 in situ sampling 
missions were carried out concurrently with UAV flights (Table 3). The height of BW de-
posits was initially assessed using a plastic ruler at the study site. To ensure accuracy, the 
ruler was placed gently on the deposits to prevent penetration into the underlying sand, 
and was aligned vertically to measure at around every 10 m of BW, in a transect line of 
three points: the start of the BW (near the water), middle point selected by expert judge-
ment, and the end of the BW (furthest from the water). They comprised a total of 177 
points within each site, covering areas of BW deposits and reference areas without BW. 

Table 3. In situ sampling of BW on the coast and in the water at four study sites from December 
2020 to January 2022. Bolded dates indicated when the RGB camera was used and not bolded when 
the multispectral camera was used. The number of height measurements per sampling is provided 
in brackets. 

Melnrage Karkle Palanga Sventoji 
2021.04.20 (3) 220.12.05 (1) 2020.12.05 (2) 2020.12.05 (4) 

2021.06.02 (20) 2021.07.27 (3) 2021.07.29 (3) 2021.07.07 (10) 
2021.06.18 (11) 2021.09.17 (23)   2021.08.27 (3) 
2021.08.10 (8)      2021.09.17 (58) 

2021.09.16 (25)       
2022.01.24 (3)       

The estimation of the BW height from the UAV images involved subtracting the DSM 
from the DTM using GDAL. 

2.5. Performance Metrics 
To validate the model’s performance during training, the data were randomly split 

into two sets, 80% for training and 20% for validation, according to common practice to 
avoid overfitting and test the model’s ability to generalize. This split ensured that the 
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model was trained on a large enough dataset to learn the necessary features, while also 
having a separate set of data to test its performance [43]. A separate validation set, con-
sisting of all tiles, was used to assess the model’s ability to generalize to new data and 
ensure that it was not overfitting to the training data. 

Several metrics were employed to assess the model’s performance: precision, recall, 
F1 score, and Intersection over Union (IoU). Precision quantifies the proportion of cor-
rectly predicted positive values to the total predicted positives, while recall measures the 
fraction of correctly predicted positive values to the total actual positive values. The F1 
score harmoniously combines precision and recall, providing a balanced performance 
metric [44]. The IoU, also known as the Jaccard index, offers a comprehensive assessment 
of the model’s performance, going beyond pixel accuracy to measure the similarity be-
tween the predicted and ground truth labels [45]. In general, models trained on specific 
datasets will have a higher IoU than models trained to be more general, but the latter will 
have a wider range of applicability [46]. The effectiveness of the selected models was eval-
uated on testing data by comparing the IoU metric. The IoU was also compared for each 
AOI and each class. No single IoU threshold fits all use cases; however, it is common prac-
tice to use a threshold of 0.5 for accurate segmentation [47]. Therefore, IoU values above 
0.7 were considered as high, from 0.5 to 0.7 as moderate, and below 0.5 as low. 

In addition, the IoU between labeled and segmented BW for tiles in the whole mosaic 
BW areas were calculated and compared with each other as well. Furthermore, for the 
comparison of IoU between AOIs, the normality and homogeneity of variance assump-
tions were tested, using the Shapiro–Wilk and Levene’s tests, respectively. Given the vio-
lations of normality and homogeneity of variance assumptions, the Dunn’s test post hoc 
pairwise comparisons of IoU between the AOIs was utilized. The p-values were adjusted 
using the Bonferroni correction to control for multiple comparisons. The comparison be-
tween averages was performed with a one-way ANOVA test. All statistical analyses were 
performed using numpy [48], scipy [49], statsmodels [50], and sklearn [51] Python pack-
ages, at a significance level of 0.05. 

In situ measured heights and heights calculated from UAV were assessed for corre-
spondence using Pearson’s correlation coefficient (r). The precision of these measure-
ments was further quantified by the root mean square error (RMSE) and mean absolute 
error (MAE). This was also tested for separate AOIs. 

3. Results 
3.1. Performance of Various Input Training Data 

In training the U-Net model’s performance across various data combinations, the 
“band ratio indices” combination consistently showcased the best results (Table 4), espe-
cially for the segmentation of BW. With this combination, the model achieved an F1 score 
of 0.86 and an IoU of 0.75 for BW. Notably, the “5 bands” combination also delivered good 
results, particularly for potential BW, with an F1 score of 0.57 and an IoU of 0.40. However, 
when examining the potential BW class, all combinations presented relatively lower IoU 
scores. The “augmented data” combination displayed the least promising outcomes 
across the metrics. 
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Table 4. IoU, precision, recall, and F1 scores for different classes resulting from a convolutional neu-
ral network U-Net model’s training set, on various data combinations. The columns in the table 
represent different datasets, while the rows contain the performance scores for each class. These 
results were obtained after 100 epochs of training. Best performing values for average, BW, and 
potential BW are marked with the * symbol. 

Dataset Type 
5 Bands and 

Height 
5 Bands RGB RGB and Height 

Augmented 
Data 

Band Ratio In-
dices 

IoU avg. 0.67 0.71 * 0.69 0.69 0.66 0.67 
Beach wrack 0.72 0.73 0.71 0.66 0.67 0.75 * 

Potential beach wrack 0.35 0.4 0.35 0.38 0.3 0.39 * 
Water  0.68 0.73 0.69 0.73 0.7 0.65 
Sand  0.75 0.81 0.76 0.78 0.74 0.71 

Other  0.86 0.89 0.93 0.92 0.88 0.86 
F1 score avg. 0.87 0.9 * 0.88 0.89 0.87 0.86 

Beach wrack  0.83 0.84 0.83 0.79 0.8 0.86 * 
Potential beach wrack  0.52 0.57 * 0.51 0.55 0.46 0.56 

Water  0.81 0.85 0.82 0.84 0.83 0.79 
Sand  0.86 0.89 0.86 0.88 0.85 0.83 

Other  0.94 0.96 0.97 0.97 0.96 0.94 
Precision avg. 0.88 0.90 * 0.89 0.9* 0.88 0.87 

Beach wrack  0.76 0.87 0.87 0.89* 0.83 0.79 
Potential beach wrack  0.51 0.54 0.5 0.48 0.37 0.8 * 

Water  0.77 0.83 0.79 0.82 0.79 0.77 
Sand  0.87 0.89 0.88 0.91 0.89 0.79 

Other  0.99 0.98 0.98 0.97 0.98 0.98 
Recall avg.  0.87 0.89 * 0.88 0.89 * 0.87 0.86 

Beach wrack  0.93 0.81 0.79 0.72 0.77 0.94 * 
Potential beach wrack  0.53 0.6 0.53 0.66* 0.58 0.43 

Water  0.86 0.87 0.86 0.86 0.87 0.8 
Sand  0.85 0.9 0.84 0.85 0.82 0.88 

Other  0.9 0.95 0.97 0.97 0.93 0.91 

The post hoc test revealed that none of the pairwise comparisons were statistically 
significant (p ≥ 0.74), suggesting that different data combinations did not significantly im-
pact the IoU scores. 

The “5 bands” combination yielded the best results for the sand and water classes, 
achieving the highest F1 scores and IoU values among the combinations. In contrast, the 
“RGB” combination was the most effective for the other class, showcasing exemplary F1 
scores and IoU values. The precision and recall rates for each of these optimal combina-
tions were also notably high, confirming the findings. 

3.2. Validation of Trained U-Net Model for Testing Data 
In the segmentation of BW, the combination that used “RGB” bands yielded the best 

performance with an IoU of 0.42 (Figure 6) and further demonstrated an F1 score of 0.54. 
Following closely, the combination utilizing “augmented data” had an IoU of 0.41, sup-
ported by an F1 score of 0.55. The “5 bands and height” combination also showcased no-
table performance with an IoU of 0.39 and an F1 score of 0.54. Conversely to training data, 
for validation the “band ratio indices” combination yielded the lowest IoU of 0.37 for BW 
classification, alongside an F1 score of 0.50. 
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Figure 6. The boxplots present the IoU scores for the six different data combinations applied during 
the U-Net (CNN) model validation. The plots show the distribution of IoU scores for each segmen-
tation class: BW, potential BW, water, sand, and other. The central line inside each box represents 
the median, while the edges of the box indicate the 25th and 75th percentiles. Outliers may be rep-
resented by individual points. 

The “5 bands and height” combination emerged as the most effective for potential 
BW segmentation, recording an IoU of 0.20 and 0.38 for the F1 score. The “RGB” and “5 
bands” combinations followed closely, with an IoU of 0.20. While the “RGB” combination 
achieved an F1 score of 0.46, the “5 bands” combination had an F1 score of 0.38. The “aug-
mented data” combination exhibited the least efficacy in segmenting potential BW, with 
the lowest IoU of 0.16 and accompanying F1 score of 0.34. 

Regarding the additional classes, in the water class, the “RGB” combination emerged 
superior with an IoU of 0.64 and an F1 score of 0.76. In contrast, the “band ratio indices” 
combination exhibited the lowest performance, securing an IoU of 0.45 and an F1 score of 
0.58. In the sand class, the “RGB” combination outperformed the rest with an IoU of 0.70 
and 0.82 for the F1 score, while the “band ratio indices” combination trailed with an IoU 
of 0.48, alongside an F1 score of 0.61. For the class of other, the “RGB and height” combi-
nation achieved the highest IoU of 0.95, supported by an F1 score of 0.97, whereas the “5 
bands and height” combination had the lowest IoU of 0.87, with an F1 score of 0.91. 

For the overall average performance of all combinations, there was no significant dif-
ference between them (f = 0.10, p > 0.05). The “5 bands” combination achieved an F1 score 
and IoU of 0.88 and 0.54, respectively. When height was incorporated, the “5 bands and 
height” combination demonstrated a slight dip in performance, with average metrics for 
the F1 score at 0.85 and an IoU of 0.51. The “augmented data” combination showcased 
metrics closely resembling the “5 bands” combination, with 0.88 for F1 score and 0.54 for 
IoU. A noticeable decrease in average performance was observed with the “band ratio 
indices” combination, yielding 0.84 and 0.47 for the F1 score and IoU, respectively. The 
“RGB” combination recorded the highest average metrics among all combinations: F1 
score of 0.92 and IoU of 0.58. Lastly, the “RGB and height” combination mirrored the 
“RGB” combination in precision and recall, but displayed a slightly lower average F1 score 
and IoU of 0.92 and 0.57, respectively. 

Comparing the segmentation results of BW between AOIs, Dunn’s post hoc tests for 
IoU showed significant differences between Karkle and the rest of the AOIs (p < 0.05), 
while no significant differences (p > 0.05) were observed between Melnrage, Palanga, and 
Sventoji (Figure 7). 

Specifically, in Sventoji, the “5 bands and height” combination yielded the highest 
IoU at 0.48 ± 0.26, while in Palanga, the “RGB and height” combination was most effective 
with an IoU of 0.46 ± 0.22. For the class of potential BW, the “RGB and height” combination 
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in Karkle registered an IoU of (0.29 ± 0.22), and in Melnrage, the “RGB” combination 
yielded (0.26 ± 0.19). 

  
(a) (b) 

  
(c) (d) 

Figure 7. Boxplots for each AOI separately where (a) is Melnrage, (b) Karkle, (c) Palanga, and (d) 
Sventoji. Each boxplot represents the results for all data combinations, and notches show a confi-
dence interval around the median. 

For the water class, the “RGB” combination in Melnrage produced an IoU of (0.63 ± 
0.23), followed by the “RGB and height” combination in Karkle with (0.50 ± 0.19). In the 
sand class, the “RGB and height” combination in Karkle led with an IoU of (0.65 ± 0.25), 
closely followed by the “RGB” combination in Melnrage, having an IoU of 0.68 ± 0.15. 
Lastly, for the other class, the “RGB and height” combination in Karkle achieved the high-
est IoU at (0.93 ± 0.06), while Melnrage scored (0.94 ± 0.09) using the “RGB” combination. 

3.3. Heights and Areas of BW 
The labeled areas of BW were from approximately 235.55 m2 to 11193.33 m2, while 

the area of BW derived from the U-Net model using the “RGB” combination exhibited a 
wider range, from 8.83 m² to 3710.01 m2 (Figure 8). While the relationship was generally 
linear between the labeled BW areas and areas retrieved using the U-Net model with the 
“RGB” combination, there was a relatively large average with standard deviation, namely, 
a labeled area of 1887.94 ± 2198.93 m2, corresponding to the area of 1217.80 ± 939.90 m2 
derived from the U-Net model using the “RGB” combination. 

Palanga had the best agreement comparing labeled to RGB areas, with an average of 
39.09 ± 39.43 m2. For Karkle, all areas were overestimated with an average of −572.05 ± 
427.17 m². As for Sventoji, it had the largest average, 3005.83 ± 2603.98 m2 of BW area, and 
the differences were also the largest, 1295.03 ± 2118.10 m2. In Melnrage, most of the values 
were underestimated except for one on 8 September 2021, and the average overestimation 
was 315.66 ± 238.01 m2. 
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Figure 8. The areas of BW coverage in the investigated AOIs retrieved from UAV after the applica-
tion of the U-Net model with the “RGB” combination and labeled BW areas. 

While comparing labeled to segmented areas of BW, the “RGB” combination exhib-
ited the highest correlation coefficient (r = 0.87) among all tested approaches for agreement 
with the area, followed closely by the “RGB and heights” combination with an r of 0.86. 
Additionally, both these models had the lowest MAE and RMSE values, 562.27 and 783.59 
for “RGB”, and 658.28 and 897.08 for “RGB and height”, respectively. 

Other data combinations (Table 5) had lower correlation coefficients ranging from 
0.46 for “5 bands” to 0.73 for “augmented data” combinations. The MAE and RMSE were 
also worst for “5 bands” at 825.54 and 1377.34, respectively, and for the “augmented data” 
combination, that was the next best combination after “RGB” and “RGB and height”, with 
a MAE of 575.91 and an RMSE of 902.87. 

Table 5. Statistics between labeled and segmented areas of BW. Pearson’s correlation coefficient—r, 
MAE—mean absolute error, RMSE—root mean square error. 

Data Combinations r MAE RMSE 
5 bands and height area 0.48 807.99 1512.91 
Augmented data area 0.73 575.91 902.87 
Band ratio indices area 0.68 648.42 1097.48 
5 bands area 0.46 825.54 1377.34 
RGB area 0.87 562.27 783.59 
RGB and height area 0.86 658.28 897.08 

The average calculated height of BW (0.46 ± 0.40 m) from UAV overestimated the in 
situ measured height by five-fold (0.09 ± 0.11 m) from a sample size of 177 (Figure 9). The 
maximum BW height calculated was 2.37 m, while the maximum in situ measurement 
was only 0.52 m, with a standard deviation of calculated height—0.03 and in situ—0.01 
m. The correlation between modeled and in situ heights was 0.44 (p < 0.05). 

From the example of the visual representation of all AOIs (Figure 10), it is evident 
that the model’s performance is adequate in accurately classifying the majority of the BW. 
In these examples, Melnrage is overestimated by 455.10 m2, Karkle underestimated by 
251.59 m2, Palanga overestimated by 56.75 m2, and Sventoji overestimated by 934.70 m2. 

This precision captures the expected locations and distribution patterns of all classes, 
confirming the model’s robustness. Specific regions, such as Palanga and Melnrage, pre-
sent minor challenges, with a few discrepancies in detecting the potential BW. However, 
these instances are more the exception than the norm. The sand and water classes have 
the best visual results with few minor variations. Similarly, the class of other is also excel-
lent, with just a few objects, mainly in Palanga, misclassified as sand. 
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Figure 9. Agreement between in situ height and mosaic-calculated height. Different colors represent 
different AOI. r—Pearson’s correlation coefficient, MAE—mean absolute error. 

  
(a) (b) 
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Figure 10. Examples of BW spatial distribution in each AOI after UAV image processing with the U-
Net model using the “RGB” combination. RGB (left), labeled BW (middle), and modeled BW (right) 
maps are provided for (a) 16 September 2021 in Melnrage, (b) 17 September 2021 in Karkle, (c) 15 
September 2021 in Palanga, and (d) 1 October 2021 in Sventoji. The colors of BW in Sventoji and 
Karkle are different because they are combinations of green, blue, and NIR bands, making them 
easier to distinguish visually. The different colors near and above the water are noise (see 4.2). 

4. Discussion 
4.1. Assessment of U-Net Model Performance in BW Segmentation 

The U-Net CNN model exhibited commendable results in BW segmentation, partic-
ularly when utilizing the “RGB” combination. The segmentation accuracy not only al-
lowed the delineation of BW but also enabled the estimation of its total area across the 
selected AOIs, ranging from 8.83 m2 to 3710.01 m2. This capability to accurately segment 
and subsequently estimate the BW area reaffirms the efficiency of U-Net models in seman-
tic segmentation tasks, especially for high-resolution remote sensing images [52]. 

To the best of the authors’ knowledge, only two studies [15,20] were carried out in 
the context of UAV monitoring of BW. Both of them performed object-based image anal-
ysis (OBIA) and achieved relatively high accuracy (producer accuracy > 80%) in classifica-
tion. In contrast, our research primarily employed the IoU metric, which is suggested as a 
superior method, especially when combined with other measures like the F1 score. It is 
also more reliable as it takes into account the whole area rather than a random sample of 
points or polygons [53], achieving more reliable ML model performance evaluation. How-
ever, the labeling process is time-consuming to achieve metrics that include an entire im-
age, especially for large datasets, as in this study (29 mosaiced orthophotos), but after the 
first training, the U-Net model can be run on new images and instead of labeling all im-
ages, the results can just be adjusted as labels for the new round of training, this way 
reducing the labeling time and overtime, and improving the model’s accuracy and gener-
alizability. While recognizing that the absence of producer accuracy calculations pre-
cludes a direct statistical comparison with the referenced OBIA studies, it is suggested 
that future research should incorporate producer accuracy or equivalent measures to en-
able such direct comparisons. 
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Some of the images captured during sunrise featured substantial shadow coverage 
on the beach due to the westward orientation of the AOIs. Such shadows may influence 
the CNN model’s segmentation precision; however, investigating shadow impacts would 
entail a controlled experimental design that would distract from the study’s core objec-
tives. Future research should factor sun position in to minimize shadow occurrence dur-
ing UAV imagery collection for BW segmentation. External elements like cloud cover and 
sun angle significantly impact UAV imagery quality [54]. Moreover, accurately pinpoint-
ing the waterline in UAV imagery remains a persistent challenge due to the sea surface’s 
ever-changing nature, as noted by Long et al. [55] and Brouwer et al. [56]. 

The training duration can be extensive, especially with large datasets and intricate 
models. In our scenario, with 17 tiles measuring 5000 × 5000 each and more than four 
encoder layers, the “5 bands and height” took roughly 4 h for 100 epochs. Nonetheless, 
predicting an individual image tile only takes about 5 min, which is important for man-
agement tasks that need to estimate quickly whether the amount of BW should be re-
moved. The processing time is also essential, especially as monitoring scales increase. One 
way to improve it could be the employment of architectures that merge an anchor-free 
detector with a region-based CNN, which has demonstrated superior precision and faster 
inference speeds, which is advantageous for smaller datasets [57]. 

4.2. Model Transferability 
In general, the IoU values for BW were consistently moderate using all combinations, 

suggesting that the model’s generalizability and transferability in time are possible, con-
sidering that the dataset encompassed images captured during varied seasons and under 
diverse weather conditions, and ensuring a comprehensive representation, contrary to 
previously mentioned studies. Such results resonate with the broader understanding that 
UAVs are potent tools for monitoring diverse beach aspects, from mixed sand and gravel 
to litter [58,59]. 

The transferability to unseen AOIs could be complicated, as good results were 
achieved for three AOIs (Sventoji, Melnrage, and Palanga) with relatively homogenous 
surfaces, characterized by sedimentological uniformity with minimally varying geo-
morphic attributes and objects, ensuring a predictable substrate across the examined ter-
rain. Differently from other AOIs, surface conditions were heterogenous in Karkle, which 
could explain in the low performance of combinations that included heights (BW IoU = 
0.37) compared to other data combinations (BW IoU from 0.39 to 0.56), suggesting that 
heights acquired using the methods in this study should be used carefully. Additionally, 
the diminished IoU results after incorporating height in both RGB and multispectral data 
indicate potential errors in the derived heights, or that an overload of layers might be 
confounding the model; this aligns with the observations of Pichon et al. [60] and 
Gruszczyński et al. [61]. The accuracy of height could be improved by taking images with 
oblique angles in addition to nadir, increasing the information available for DSM calcula-
tions using structures from motion algorithms [62]. 

Additionally, the “augmented data” combination did not exhibit a significant diver-
gence from the “5 bands and height“ combination. This observation suggests that the 
model does not exhibit a bias towards the spatial localization of objects within the image. 
Consequently, this reinforces the notion of the model’s transferability across varied sce-
narios where objects and areas may be positioned differently within the AOI, indicating 
the model’s adaptability in handling them effectively. 

4.3. Data Combination Influence on the Results 
The model’s effectiveness varies with different data combinations and classes. Nota-

bly, the “5 bands” combination had decent results for the potential BW segmentation, 
achieving an F1 score of 0.57 and an IoU of 0.40. However, this was inconsistent across the 
classes of sand, water, and other. The performance inconsistencies across data 
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combinations, such as the superior results of the “RGB” in the BW class but not univer-
sally, signal the need for future exploration. While the IoU results for BW were anticipated 
to be the best with the “5 bands and height” combination due to its comprehensive data, 
the outcomes were the opposite (IoU = 0.38), and the “RGB” combination IoU was 0.42; 
however, the difference between combinations was not significant. This suggests that for 
the segmentation of chosen classes, simpler sensors (such as RGB cameras) could be em-
ployed as the accuracy is not worse than with multispectral ones, and the training and 
prediction time for fewer bands is also shorter. This finding contradicts other studies that 
found that for multispectral combinations, segmentation accuracy is improved [63]. 

In this study, equal weights were used for different bands; however, a potential need 
for different weight distributions in the initial U-Net model for various bands and classes 
could improve the results of multispectral combination, as hinted by Amiri et al. [64] and 
Matuszewski et al. [65]. Therefore, the “RGB” combination’s surprising efficacy further 
stresses the need for model adjustments, such as the depth and complexity of CNN mod-
els. Rao et al. [66] noted that deeper models can achieve higher detection accuracies but 
demand more parameters and longer training and inference times. 

Data pre-processing and augmentation are equally impactful on CNN performance. 
As pointed out by Rodrigues et al. [67], CNNs generally fare better with non-pre-pro-
cessed images when trained from scratch. Thus, the pre-processing and augmentation ap-
proach for various combinations could be responsible for the disparities observed across 
different classes. Moreover, selecting activation functions and optimization methods can 
also lead to differentiated results. For example, S. Dubey et al. [68] observed that the dif-
fGrad optimizer excels when training CNNs with varied activation functions. 

To find the relative importance of each spectral band in the U-Net model, it is sug-
gested to perform a feature ablation analysis, where bands are individually omitted to 
observe the effect on segmentation accuracy [69]. Additionally, feature permutation im-
portance could be employed, shuffling band values to quantify their impact on model 
performance [70]. Furthermore, Grad-CAM could provide insight into which bands most 
influence the predictions of model through gradient-based importance mapping [71]. 
These methodologies could enable a precise understanding of each band’s role in the 
model’s functionality. In this study, these techniques were not employed, but it would be 
beneficial for future work to test these techniques to optimize the model’s spectral band 
selection. 

Exploring the U-Net model’s synergy with other technologies or data sources could 
be beneficial. Thomazella et al. [72] documented the efficacy of drone imagery merged 
with CNNs for environmental monitoring. Given the promising results of the “RGB” and 
“RGB and height” combinations, integrating them with resources like satellite images 
could create a more comprehensive system for coastal environment monitoring. 

4.4. Class Influence on the Results 
The model’s challenges become particularly discernible in its capacity to detect po-

tential BW. The complexities in detecting this class are largely due to the inherent com-
plexities of aquatic environments and underwater light behavior. A primary challenge 
stems from how water impacts light absorption and reflection [73], with optical complex-
ities in water bodies rendering some remote sensing algorithms less effective. Light shift-
ing at varying water depths can modify the spectral characteristics of reflected light, af-
fecting the model’s capability to accurately segment potential BW. Furthermore, the sun’s 
glint can overshadow the upwelled water-leaving radiance during elevated solar angles. 
As Gagliardini et al. [74] noted, this leads to noise in the image information. Overstreet 
and Legleiter [75] further demonstrated that sun glint might induce over-corrections in 
shallow areas of water in the imagery, producing unreliable data. Factors such as wave 
activity and sea surface roughness add complexity to the water’s optical properties, affect-
ing the quality of remote sensing reflectance, as described by Zhang et al. [76]. Improving 
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the segmentation of potential BW could be achieved by adding further pre-processing 
steps that would correct for water depth [77] and the sun glint effect [78,79]. 

The limitation of potential BW detection in shallow coastal waters holds significant 
implications. The deposition of potential BW, especially in vast amounts under intense 
heat, requires its prompt removal to uphold the beach’s ecological equilibrium, smell, and 
visual appeal. Overlooked potential BW might lead to significant underestimations of BW 
deposition on beaches, thereby affecting beach management. 

This study recommends prioritizing the use of “RGB” data configurations for U-Net 
CNN applications in BW segmentation due to their moderate accuracy and lower compu-
tational demand. It is recommended to re-evaluate the inclusion of height data from 
UAVs, as it did not significantly improve and sometimes even reduced model precision. 
Beach managers should consider these findings to optimize BW monitoring workflows, 
ensuring that methods remain cost-effective and suitable for various beach types without 
the need for high-end computing resources. This approach will help in scaling up coastal 
monitoring efforts while maintaining efficiency and accuracy. 

While this study has laid important groundwork in applying U-Net CNN models for 
BW segmentation using UAV imagery combinations, there remain areas for enhancement. 
Future studies could benefit from incorporating a wider range of environmental condi-
tions and beach morphologies to strengthen the model’s generalizability. Moreover, inte-
grating advanced data pre-processing techniques to reduce the effects of variable water 
reflectance could further refine segmentation accuracy. Additionally, employing a system-
atic approach to evaluate the impact of individual spectral bands on the model’s perfor-
mance could provide deeper insights into the model’s interpretability and guide more 
efficient feature selection. 

5. Conclusions 
The U-Net model showed promising results using a model trained only on the “RGB” 

combination for validation data, where the accuracy of BW segmentation was moderate 
(IoU = 0.42 and F1 score = 0.54), while a relatively better accuracy (F1 score = 0.92 and IoU 
= 0.59) was achieved for the overall model (the segmentation of all classes). The achieved 
segmentation accuracy enabled a consistent estimation of BW across the studied AOIs, 
and BW was found to be in a range of 8.83 m2 to 3710.01 m2. However, the model under-
performed in the segmentation of potential BW, influenced by the inherent challenges 
presented by variable water reflectance, which might be modulated by factors such as 
wave patterns, turbidity, transparency, depth, and sun glint. The empirical evidence con-
firmed a notable degree of transferability in the deployment of the U-Net model across 
other locations with similar geomorphology of beaches (e.g., sandy or pebble beaches) to 
those utilized in the training data. 

Contrary to the initial hypothesis, incorporating all spectral bands did not improve 
the model’s performance across all classes. Interestingly, the inclusion of height data, ac-
quired from UAV DSM that were only acquired using nadir-facing images, should be re-
considered as the heights will not have accurate information. 

Finally, this study underscores the utilization of U-Net CNNs for BW detection, 
demonstrating that effective model training and analysis can be conducted without the 
reliance on high-end computing resources, thereby allowing for more accessible and scal-
able applications in BW monitoring and management. 
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