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1 INTRODUCTION 

1.1 Relevance of the thesis 

Marine spatial planning and ecosystem-based management 

involves methods of assessing the quality of habitats to deliver the 

high-level objective of achieving healthy ecosystems (Tillin et al., 

2008; Borja et al., 2012). “Habitat” in this context is defined as a 

distinctive seabed area with relatively homogeneous physico-chemical 

conditions and matching biological features (sensu Hiscock and Tyler-

Walters, 2003; Olenin and Ducrotoy, 2006). Historically, the quality 

of benthic habitats was valuated in connection with production of fish 

food (Petersen, 1914, 1918). Such fishery based approach dominated 

in marine benthic studies until 1970s. Later, several seminal papers 

appeared where the benthic species distribution was used to assess the 

environmental quality of marine habitats (Leppäkoski, 1975; Pearson 

and Rosenberg, 1978; Järvekülg, 1979).  

Valuation of seabed for fishery production became an integral 

part of the ecosystem goods and services assessment in marine 

environment (Duarte, 2000). Ecosystem services, the processes 

whereby ecosystems render benefits to people, are the principal means 

for communicating ecological change in terms of human benefits 

(Chan and Ruckelshaus, 2010). Whereas concepts of ecosystem goods 

and services in marine environments are rapidly developing (Kremen 

and Ostfeld, 2005; Rönnbäck et al., 2007) the quantitative approaches 

or assessments are rare. Furthermore, many of them focus on 

evaluation of socio-economic aspects only (Troy and Wilson, 2006; 

Sanchirico and Mumby, 2009), not reflecting the quality of benthic 

habitats in terms of, e.g. a fish feeding ground service. 

On another hand, the assessment of the goods and services 

provided by marine ecosystems almost always attempts to attach a 

monetary value to the biodiversity in an area, or the value of an area in 

terms of importance for human use (Derous et al., 2007), i.e. it is 

assessing the quality of habitats from the anthropocentric point of 

view. The concept, developed by S. Derous et al. (2007) takes another 
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approach: it considers the “biological value” defined as the intrinsic 

value of marine biodiversity without reference to anthropogenic use. 

In other words, it focuses on the features of species and communities 

themselves and not on the contamination or the extractable/usable part 

of the ecosystem: such biocentric approach is still very rare in 

assessments of the habitat quality (Węsławski et al., 2009). 

Both anthropocentric and biocentric approaches in habitat 

quality assessments rely on spatial information on environmental 

characteristics. However, such assessments are usually based on the 

point sampling data, especially for the distribution of marine biota. 

Sampling sites rarely are dense and evenly distributed within study 

area to use simple interpolation techniques for the creation of spatial 

maps (Li and Heap, 2008). Empirical, or species distribution models 

(SDMs) relate the occurrence or abundance of organisms with the 

environment factors that limit their distribution. Such models can 

estimate the potential habitat of a species using environmental data as 

predictors. SDMs are gaining increasing attention in aquatic ecology 

(Robinson et al., 2011) in many applications, from global predictions 

of the seafloor biomass (Wei et al., 2010) to species distributions at 

regional scale (Gogina and Zettler, 2010; Vincenzi et al., 2011), 

including the projection of future biological invasions.  

In this study empirical modelling is being used for the 

assessment of the seabed quality in terms of fish food provision, for 

biocentric biological valuation of benthic habitats in Lithuanian 

marine area (LMA) and for the assessment of the spread of an 

invasive benthic species based on video survey data. 

1.2 Objectives and main tasks of the study 

The aim of this study was to assess the quality of benthic 

habitats by applying the empirical modelling of the macrozoobenthos 

species distribution. 

 

The following tasks were raised for this work: 
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1) to perform the comparative analysis of different species 

distribution models and select the most fit method for the 

prediction of macrozoobenthos distribution; 

2) to create a system integrating the empirical modelling of 

macrozoobenthos and data on fish diet for the assessment of 

benthic habitat quality in terms of the fish feeding ground 

provision; 

3) to assess the habitat quality in terms of food provision for 

commercial fish species in the Lithuanian marine area; 

4) to implement the biological valorisation approach for the 

benthic habitats in the Lithuanian marine area; 

5) to assess the range of benthic habitat quality alteration caused 

by spread of the invasive bivalve Dreissena polymorpha 

based on video survey data and the empirical modelling. 

1.3 Novelty of the study 

This study provides the first results of empirical modelling of 

occurrence and biomass distribution of the most common 23 

macrozoobenthos species or higher taxa in LMA. Some of the species 

were modelled in the Baltic Sea region for the first time. An original 

procedure is proposed for the quality assessment of fish feeding 

grounds based on the modelling of fish prey items and benthic habitat 

quality maps for feeding of Baltic cod, European flounder and 

viviparous eelpout were produced. A biocentric biological valorisation 

of benthic communities in LMA was performed and the most valuable 

habitats outlined. The spread of the invasive bivalve Dreissena 

polymorpha in the lake Drūkšiai was innovatively modelled based on 

the coverage data acquired from the remote underwater video surveys.  

1.4 Scientific and applied significance of the results 

The results of this study increase understanding of the spatial 

distribution of macrozoobenthos in Lithuanian Baltic Sea. Comparison 

of several empirical modelling methods can prove very useful for the 

selection of modelling techniques for future studies. The proposed 
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procedure to assess the quality of fish feeding grounds can provide 

useful information for ecosystem-based management in LMA and 

could be adjusted for other purposes, such as feeding grounds for 

marine birds or sensitivity assessment of species and biotopes. 

Biological valorisation of benthic habitats reveals the biocentric 

quality of benthic habitats in LMA and is also important for planning 

activities in marine areas.  

Empirical modelling of zebra mussel Dreissena polymorpha 

increased the knowledge about the extent of the invasion in the lake 

Drūkšiai. Estimations of the total biomass of D. polymorpha can be a 

basis for quantifying its functional role in the ecosystem. The 

prediction of benthic species coverage based on remote underwater 

video surveys is an effective method for the assessment of species 

distribution at a large scare in comparison of grab sampling and 

SCUBA diver surveys. This could be applied in marine studies, i.e. 

estimating the distribution of blue mussel Mytilus trossulus in offshore 

areas. 

1.5 Defensive statements 

1) Out of tested empirical modelling methods, Random forests is 

the most fit method to model the occurrence and biomass 

distribution of macrozoobenthos in LMA. 

 

2) Empirical modelling of macrozoobenthos and the data on fish 

diet composition can be successfully integrated for the benthic 

habitat quality assessment in terms of food provision for 

fishes. 

 

3) The most valuable habitats based on biological valorisation 

are coastal stony bottoms situated in the northern part of LEZ. 

 

4) Empirical modelling based on video survey data can be 

applied for the assessment of the habitat alteration range 

caused by invasive bivalve Dreissena polymorpha. 
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1.6 Scientific approval 

Results of this study were presented in 7 international and 9 

Baltic Sea regional conferences and seminars:  

2
nd

 scientific-practical conference „Marine and coastal 

researches – 2009“, Palanga, Lithuania, April 2008; 

3
rd

 regional student conference “Biodiversity and Functioning 

of Aquatic Ecosystems in the Baltic Sea Region”, Juodkrantė, 

Lithuania, October 2008;  

Seminar at Faculty of Natural Sciences and Mathematics, 

Klaipėda University, Klaipėda, Lithuania, October 2008. 

3
rd

 scientific-practical conference „Marine and coastal 

researches – 2009“, Nida, Lithuania, April 2009; 

8
th
 international symposium “GeoHab 2009”, Trondheim, 

Norway, May 2009; 

Regional workshop “Systematic planning tools for the 

conservation of biodiversity in the European seas”, Strömstad, 

Sweden, September 2009; 

4
th
 regional student conference “Biodiversity and Functioning 

of Aquatic Ecosystems in the Baltic Sea Region”, Dubingiai, 

Lithuania, October 2009; 

International scientific conference “Cultural dialogue and 

personality”, Klaipėda, Lithuania, November 2009; 

4
th
 scientific-practical conference „Marine and coastal 

researches – 2010“, Palanga, Lithuania, April 2010; 

5
th
 international student conference “Biodiversity and 

Functioning of Aquatic Ecosystems in the Baltic Sea Region”, 

Palanga, Lithuania, October 2010;  

Seminar on the results from the project PREHAB, Klaipėda, 

Lithuania, January 2011; 

Regional workshop “Ecological, economical and institutional 

challenges for spatial planning in the Baltic – a multidisciplinary 
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introductory course on ecological mapping and economic valuation of 

coastal areas”, Aland, Finland, February 2011; 

5th scientific-practical conference „Marine and coastal 

researches – 2011“, Palanga, Lithuania, April 2011;  

10
th
 international symposium “GeoHab 2011”, Helsinki, 

Finland, May 2011;  

6
th
 international student conference “Aquatic environmental 

research”, Palanga, Lithuania, October 2012. 

7th scientific-practical conference „Marine and coastal 

researches – 2013“, Klaipėda, Lithuania, April 2013. 

 

The material of this study was presented in 4 original 

publications, published in peer-reviewed scientific journals: 

 

Šiaulys, A., Daunys, D., Bučas, M., Bacevičius, E., 2012. 

Mapping an ecosystem service: a quantitative approach to derive fish 

feeding grounds. Oceanologia, 54 (3), 491-505. 

Šiaulys, A., Bučas, M., 2012. Species distribution modelling of 

benthic invertebrates in the south-eastern Baltic Sea. Baltica, 25 (2), 

163-170. 

Bučas, M., Bergström, U., Downie, A.L., Sundblad, G., 

Gullström, M., Numers, M., Šiaulys, A., Lindegarth, M., 2013. 

Empirical modelling of benthic species distribution, abundance, and 

diversity in the Baltic Sea: evaluating the scope for predictive 

mapping using different modelling approaches. ICES Journal of 

Marine Science [in press]. 

Zaiko, A., Šaškov, A., Šiaulys, A., Paškauskas, R., 2013. 

Bioinvasion impact assessment of an aquatic ecosystem engineer: a 

combinative method approach. Biological Invasions [submitted]. 

1.7 Thesis structure 

The dissertation includes seven chapters: introduction, literature 

review, material and methods, results, discussion, conclusions and 

references. In the appendices, predictive maps of macrozoobenthos 
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occurrence and biomass distribution in LMA based on the empirical 

modelling is provided. The material is presented in 123 pages, 28 

figures and 19 tables. The dissertation refers to123 literature sources. 

Dissertation is written in English with an extended summary in 

Lithuanian language. 
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management of Lithuanian marine resources using novel surveillance, 

modeling tools and an ecosystem approach). 

 

1.9 Abbreviations 

Abbreviation Explanation 

AUC Area under the receiver operating characteristic 

curve 

BVM Biological valuation map 

CV Coefficient of variation 

GAM Generalized additive models 

GES Good Environmental Status 

LMA Lithuanian marine area 

MAD Mean absolute deviation 

MARS Multivariate adaptive regression splines 

MaxEnt Maximum entropy  

MSFD Marine Strategy Framework Directive 

NRMSE Root mean square error normalized by range 

RF Random forests 

RMSE Root mean squared error 

SDM Species distribution model 
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2 LITERATURE REVIEW 

2.1 From Petersen grabs to empirical modelling 

It is already a hundred years since fishery biologist and 

hydrologist Carl Georg Johannes Petersen introduced a device for a 

quantitative sampling of macrozoobenthos, simply called Petersen 

grab. He carried out first studies on quantitative description of typical 

benthic communities since 1914 (Gray and Elliott, 2009). Eventually, 

grab sampling became a standard for macrofauna studies up until now, 

nevertheless a rapid development of sciences in the last century. The 

idea was to quantitatively assess the characteristics of feeding grounds 

of benthophagous fish species, however Petersen’s studies led to first 

quantitative descriptions of benthic communities. Petersen classified 

benthic communities by the characterizing species, which was not 

seasonal and which, because of its numerical or biomass dominance, 

could be regarded as typical of a given assemblage (Gray and Elliott, 

2009). He also explained that the distribution of these communities 

was driven by two main factors: substrate type and depth. It is no 

surprise, that these two environmental parameters are the main or even 

default predictors in today’s modelling of macrozoobenthos (Gogina 

and Zettler, 2010; Reiss et al., 2011). Other Danish scientist Gunnar 

A. W. Thorson continued Petersen’s work scheme and applied it 

outside southern Baltic and the North Sea thus triggering the 

occurrence of similar studies worldwide (Gray and Elliott, 2009).  

Based on grab sampling data the first distribution maps of the 

macrozoobenthos were produced for the entire Baltic Sea (Ekman, 

1953; Segersträle, 1957; Zenkevich, 1963). However, arguably the 

first attempt to quantitatively analyse spatial distribution of 

macrozoobenthos in relation to abiotic factors was performed by the 

Estonian hydrobiologist and zoologist Arvi Järvekülg (1979). He used 

a matrix of depth/salinity and depth/temperature to plot data on 

biomass of benthic invertebrates important for fish feeding it the 

Eastern part of the Baltic Sea (Figure 1 and Figure 2).  
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Figure 1. Summer biomass distribution (g m

-2
) of a bivalve Macoma balthica 

in the Gulf of Riga and Väinameri depending on the depth and temperature 

(after Järvekülg, 1979). 

 

 
Figure 2. Biomass distribution (g m

-2
) of a bivalve Macoma balthica in Baltic 

Proper (left), Gulf of Finland (middle), Gulf of Riga and Väinameri (right) 

depending on the depth and salinity (after Järvekülg, 1979). 

 

Years later, the development of scientific equipment and 

integration of statistical methods in benthic ecology shifted marine 

research from descriptive studies to analytical research relating the 

distribution of species to a number of physical, chemical, geological 

and biological parameters using regression and other statistical 
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methods. Eventually, this led to tens of empirical models, which are 

currently called empirical models or species distribution models 

SDMs (Section 2.4). 

2.2 Assessing the quality of benthic habitats 

As mentioned above (Section 2.1), the first attempts to assess 

the quality of benthic habitats were based on the food they provide for 

different fish species. With the development of the concept of 

“ecosystem goods and services”, the provision of food resources 

started to be considered a part of the goods and services provided by 

ecosystems, including the marine ones (Figure 3).  

 

 
Figure 3. Linking biodiversity to the provision of ecosystem goods and 

services (after Rönnbäck et al., 2007).  

 

Ecosystem services are defined as “the processes whereby 

ecosystems render benefits to people” (Chan and Ruckelshaus, 2010) 

or “components of nature, directly enjoyed, consumed, or used to 

yield human well-being” (Boyd and Banzhaf, 2007). Due to the 

anthropocentric perspective of the concept, it is only natural, that 

ecosystem goods and services provided by benthic habitats are 

assessed in terms of economic values. For example, Rönnbäck et al. 
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(2007) performed the monetary valuation of the Swedish coastal 

habitats in terms of market value of the most important commercial 

and recreational fish species with documented coastal habitat 

association.  

Another aspect in quality assessment is the valuation of the 

environmental status of benthic habitats. In the 1970s, several papers 

were published on the Baltic Sea macrozoobenthos, where the benthic 

species distribution was used to assess the environmental quality of 

marine habitats. E. Leppäkoski (1975) proposed the scheme to assess 

the degree of pollution on the basis of macrozoobenthos in marine and 

brakish-water environments. In another paper, a model of the 

macrozobenthos succession within the organic pollution gradient was 

proposed (Pearson and Rosenberg, 1978). L. Zmudzinski (1978) 

invented a notion of the “macrobenthic deserts” occupying the deep 

water, oxygen deficient areas of the Sea. He was the first to predict 

that if the antropogenic eutrophication will continue, the benthic 

deserts may occupy the entire sub-halocline area. In many cases his 

prognosis has been confirmed (Olenin, 1997).  

Currently, the assessment of benthic habitat quality became a 

keystone concept in the Good Environmental Status (GES) Descriptor 

6 “Sea floor integrity” of the Marine Strategy Framework Directive 

(EC, 2008). It is important that sea floor integrity can be affected not 

only by eutrophication, benthic dredging, and other stressors. It was 

indicated that parameters by which this GES descriptor is being 

evaluated, also can be changed by invasive habitat engineering species 

(Olenin et al., 2010). One of such habitat engineering effects was 

thoroughly studied by A. Zaiko (2009) in the Curonian lagoon. 

Assessment of GES is the basis of the ecosystem-based 

approach stated in MSFD: “By applying an ecosystem-based approach 

to the management of human activities while enabling a sustainable 

use of marine goods and services, priority should be given to 

achieving or maintaining good environmental status in the 

Community’s marine environment, to continuing its protection and 

preservation, and to preventing subsequent deterioration” (EC, 2008). 

However, even such sustainable approach to the management of 
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marine environment implies environmental quality assessments which 

are, eventually, anthropocentric. 

In this respect, it is important to mention another concept in 

habitat quality assessments, which emerged in the recent decade and 

aims to establish the intrinsic quality of marine biodiversity (Derous et 

al., 2007 and references therein), see Section 2.3. 

2.3 From anthropocentric to biocentric point of view: 

valuation of the marine benthic habitats 

Search in Google scholar service (scholar.google.com) on 

“marine biocentric value” exposes 1880 hits, almost one third 

references (548 hits) are published in 2009 and later. This shows the 

increasing attention to the intrinsic, biocentric values of marine 

environment.  

As described by Derous et al. (2007), what is meant by ‘value’ 

is directly linked to the objectives behind the process of valuation (e.g. 

conservation, sustainable use, preservation of biodiversity, etc.). 

Discussions on the value of marine biodiversity almost always refer to 

the socio-economic value of biodiversity (i.e. the so-called value of 

the goods and services provided by marine ecosystems, or the value of 

an area in terms of importance for human use), and attempts to attach 

a monetary value to the biodiversity in an area. 

The biocentric value could be defined as “the intrinsic value of 

marine biodiversity, without reference to anthropogenic use” (Derous 

et al., 2007). It empathises that the value must be based on the 

properties of species from the ecosystem point of view, not regarding 

the provision of goods and services for human uses. 

As illustrated by Derous et al. (2007) (Figure 4), the intrinsic 

valuation of marine habitats should include criteria such as rarity 

(degree to which an area is characterized by unique, rare or distinct 

features for which no alternatives exist), aggregation (degree to which 

an area is a site where most individuals of a species are aggregated for 

some part of the year or a site which most individuals use for some 

important function in their life history or a site where some structural 
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property or ecological process occurs with exceptionally high density), 

fitness consequences (degree to which an area is a site where the 

activity(ies) undertaken make a vital contribution to the fitness of the 

population or species present), naturalness (the degree to which an 

area is pristine and characterized by native species) and proportional 

importance (importance in global, regional and national scale). 

 

 
Figure 4. Conceptual scheme of the biological valuation method and possible 

future steps in developing decision support tools for managers (after Derous 

et. al., 2007). 
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The conceptual approach was recently applied in several 

regional studies in Europe using modern statistical approaches. The 

delineation of the biologically most valuable areas of the seabed in the 

Polish Exclusive Economic Zone was performed by Węsławski et al. 

(2009). It was concluded, that the highest values correspond to 

habitat-forming algae Fucus vesiculosus (Figure 5).  

  

 
Figure 5. The biological valuation of the Polish Marine Areas. Shaded area 

indicates inadequate sampling for biological valuation (after Węsławski et 

al., 2009).  

 

Another implementation of biocentric marine biological 

valuation mapping was done in the Basque continental shelf (Bay of 

Biscay) by Pascual et al. (2011). The biological value of habitats was 

determined by integrating the distribution of zooplankton, 

marcophytobenthos, macrozoobenthos, fishes and marine birds 

(Figure 6).  



21 

 

 
Figure 6. Integrated Biological Valuation Map (BVM) of the Basque 

continental shelf and estuaries (after Pascual et al., 2011).  

 

Biological valuation assessment and the maps it provides are a 

good offset for other more common valuations of the seabed. As 

discussed by Węsławski et al. (2009), these maps do not reflect 

ecosystem health (the most valuable areas could be most degraded and 

vice versa), nor it corresponds to socio-economic valuation in terms of 

goods provided (fishery, gas, extractible sands, recreational areas). 

Finally, marine biological valuation is not a strategy for protecting all 

habitats and marine communities that have some ecological 

significance, but is a tool for calling attention to subzones that have 

particularly high ecological or biological significance and to facilitate 

provision of a greater-than-usual degree of risk aversion in spatial 

planning activities in these subzones (Derous et al., 2007). 

2.4 Application of species distribution models in benthic 

ecology 

Since the first attempts to quantitatively define distribution of 

marine macrozoobenthos based on abiotic data (e.g. Järvekülg, 1979, 

see Section 2.1), the development of new remote sensing technique 

and integration of statistical methods in benthic ecology shifted this 

discipline from descriptive studies to analytical investigation. The 

distribution of species is related to physical, chemical, geological and 

biological parameters using different statistical methods (Warwick and 
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Clarke, 1991). Eventually, this led to tens of empirical models, which 

are currently called empirical or species distribution models. 

Increasing availability of large-scale environmental data, better 

understanding of the relationship between environmental variables and 

species distribution, and the need for prognostic tools to predict 

changes in species distribution in response to environmental or 

climatic changes stimulated recent boom in application of species 

distribution models in the marine environment (Degraer et al., 2008; 

Glockzin et al., 2009; Gogina et al., 2010; Reiss et all. 2011; Robinson 

et al., 2011).  

Logistic regression is a frequently used regression method for 

modelling species distributions and generalized linear models (GLMs 

– McCullagh and Nelder, 1989) and have been recognized in ecology 

for some time as having great advantages for dealing with data with 

different error structures particularly presence/absence data that is the 

common type of data available for spatial modelling of species 

distributions (Austin, 2007). Later, GLM was extended into 

generalised additive models (GAM – Hastie and Tibshirani, 1990) that 

are increasingly used for species modelling (Leathwick et al., 2006; 

Austin, 2007).  

With the introduction of another empirical modelling method – 

multivariate adaptive regression splines (MARS – Friedman, 1991), 

GAM and MARS predictive performance were tested in several 

studies (e.g. Leathwick et al., 2006; Marmion et al., 2009). No 

significant differences in the results were detected, however it was 

concluded that MARS has computational advantages because of better 

handling interactions between the predictors (Austin, 2007).  

Another group of models that are getting an increasing attention 

in ecology and predictive modelling are tree-based machine learners, 

such as Bagging (Breiman, 1996), Random forests (Breiman, 2001) 

and Boosted regression trees (Friedman et al., 2000). They are all 

ensemble techniques used to stabilize predictions from multiple 

individual regression trees. While retaining the ability of the 

underlying regression-tree base learners to deal with non-linearities, 

non-smooth functions, and interaction effects, the ensemble 
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techniques increase the precision of predictions by combining several 

trees in one ensemble model (Knudby et al., 2010). Several studies 

concludes, that the improved predictive performance can be achieved 

by machine-learning algorithms such as the tree-based ensemble 

techniques, compared to the less flexible linear models (e.g. Knudby 

et al., 2010).  

For the presence only data models maximum entropy modelling 

(MaxEnt – Phillips et al., 2006, Phillips and Dudik, 2008) is very 

promising. In many studies, this method produced the best predictive 

performance in comparison to other techniques (e.g. Elith et al., 2006; 

Reiss et al, 2011). Since MaxEnt is a program with a user friendly 

interface and emphasis on the ecology studies (Elith et al., 2011) it is 

getting quite common among researchers. 

Given the need for ecosystem-based fisheries management, 

most recent studies using SDMs in marine ecosystems have focused 

on the distribution of commercial fish species (Venables and 

Dichmont, 2004; Maxwell et al., 2009; Lenoir et al.; 2012). In 

contrast, few studies have applied SDMs to the distribution of marine 

invertebrate benthos. Ysebaert et al. (2002) used logistic regression to 

model benthic species distribution in the Westerschelde estuary in the 

Netherlands, Thrush et al. (2003) and Ellis et al. (2006) modelled the 

distribution of macrozoobenthos species in New Zealand estuaries 

with a similar approach. In the North Sea, most studies applying 

SDMs were carried out on a local scale, such as polychaete 

distribution in the German Bight using multivariate adaptive 

regression splines (Meißner et al., 2008), as well as community type 

and polychaete distribution in Belgium waters using discriminant 

function analysis, and artificial neural networks plus generalized linear 

models (GLMs), respectively (Degraer et al., 2008, Willems et al., 

2008). In the Baltic, Gogina et al. (2010) and Gogina and Zettler 

(2010) modelled distribution patterns of macrozoobenthos species 

using GLMs, Downie et al. (2013) predicted the distribution of the 

seagrass Zostera marina using GAM and MaxEnt, Sundblad et al. 

(2013) modelled nursery habitat availability of predatory coastal fish 

using GAM, RF and MaxEnt. 
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There are plenty of different empirical modelling methods with 

their advantages and disadvantages. Since it is difficult to compare 

them due to different datasets and data traits, it is often recommended 

to use several modelling techniques (Araujo and New, 2007; 

Grenouillet et al., 2011).  
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3 MATERIAL AND METHODS 

3.1 Case study sites, data and sampling 

Case studies were carried out in two ecosystems: Lithuanian 

waters of the Baltic Sea and the largest lake in Lithuania – the lake 

Drūkšiai.  

3.1.1 Lithuanian marine area (LMA)  

3.1.1.1 General overview of environmental conditions 

The Lithuanian marine area is located in the south-eastern part 

of the Baltic Sea. The following description of its physical-

geographical conditions is based on several reviews: Žaromskis 

(1996), Olenin (1997), Gelumbauskaitė et al. (1999), Dippner et al. 

(2008), Olenin et al. (2012) and references therein. 

The LMA occupies ca. 6426.6 km
2
, the maximum depth is 

125 m while the average depth is approximately 50 m.  

The near-bottom salinity above the halocline ranges from 6 

PSU in the plume area of the Curonian lagoon and 8 PSU in open 

waters. The centre of the halocline is found at 74 m with mean 

boundaries of 64-90 m, where salinity increases from 7.7 to 10.4 PSU. 

The salinity in the active sub-halocline water layer (90-130 m) can 

reach over 11 PSU.  

The coast of LMA is very exposed to any western winds with 

the fetch distance over 2000 km. This results in active hydrodynamic 

environment in coastal area, thus no oxygen depletion is present. 

However, a strong vertical saline stratification results the lack of 

efficient oxygenation in the sub-halocline area. The oxygen 

concentration drops significantly form 6-9.5 ml l
-1

 (saturation 70-

100 %) to 2 ml l
-1

 (< 20 % saturation) going down from the upper 

water layer to the halocline range. Hypoxic conditions with salinity 

around 1 ml l
-1

 are present in the active sub-halocline layer.  

Vertical distribution of temperature is season dependent. The 

water is cold and homogeneous from December through March due to 

the intensive convection. In the summer, the thermocline is formed at 
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20-30 m depths, which separates warm upper water layer and 

relatively cold deep water. The temperature gradient between near-

bottom waters in coastal and offshore areas can reach 12-15 °C.  

 

 
Figure 7. Distribution of the sampling sites in Lithuanian marine area in 

1998-2010 (bathymetry acquired after L. Ž. Gelumbauskaitė, 2009). 

 

Coastal slope, extending from the shore down to 25-30 m, is 

characterised by most diverse bottom types. The uppermost part (0-

6 m), is covered by a thin layer of quartz sand, movable during storms. 

The morainic bench (pebble-gravel deposits with large boulders) lies 

beneath the sand strip, extending down to 25-30 m depth. Patches of 

pebble/gravel deposits occur on sites down to 60 m, but in general, 

this type of bottom is common only for the coastal slope. Soft bottoms 

change from the mixture of sand and gravel in the coastal area 
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affected by waves to aleurites and pelitic muds in deeper areas. In 

general, coarse and medium sands occur from the shore down to 20-40 

m depth, and fine sands – down to 50 m. Patches of coarse aleurites 

are found already at 20-40 m, they extend down to 70-90 m depth. 

Fine aleurite and aleurite-pelitic mud encircle the slopes of the Eastern 

Gotland Basin at depths between 80 and 100 m, and finally, below 90-

100 m the main type of bottom sediment is pelitic mud, which covers 

the slopes and floor of the Basin.  

 

3.1.1.2 Environmental predictors used in models 

Of the available environmental predictors known to be 

important for the distribution of benthic invertebrates (Olenin, 1997; 

Bučas et al., 2009; Gogina and Zettler, 2010; Reiss et al., 2011), eight 

were used for the models of species occurrence and biomass 

distribution: sediment types, Secchi depth, minimum near-bottom 

oxygen concentration, near-bottom current velocity, wave generated 

orbital near-bottom velocity, slope and roughness of the seabed, areas 

of above and below the thermocline. Quantitative environmental 

parameters were tested for collinearity and predictors were removed 

from models if the variance inflation factors were > 3 (Quinn and 

Keough, 2002). The layers of sediments, slope and roughness were 

derived from geological and bathymetrical charts (Repečka et al., 

1997; Gelumbauskaitė et al., 1999; Bitinas et al., 2004). Sediments 

were classified into four types: boulders, cobbles/gravel, sand and silt 

(Wentworth, 1922). The wind wave orbital velocity data layer was 

derived using SWAN model (Booij et al., 1999) based on 2008-2009 

wind data (Kelpšaitė, unpublished). National marine monitoring data 

was used to derive Secchi depth and thermocline layers (MRC, 

unpublished 1998-2006). The mean annual minimum near-bottom 

oxygen concentration (2000-2006) and bottom current velocity layers 

were derived from datasets produced by BALANCE project (Hansen 

et al., 2007; Bendtsen et al., 2007). 
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3.1.1.3 Sampling data 

In total, data from 640 benthic samples taken at 224 sampling 

sites during 1998-2010 were used to model the biomass distribution of 

the macrozoobenthos (Figure 7). Soft-bottom samples were taken with 

a Van-Veen grab, while hard bottoms were sampled by SCUBA divers 

with a 0.2 x 0.2 m frame. Shallow areas (< 6 m) along the Curonian 

spit were sampled by SCUBA divers with a plastic tube with the 

diameter of 10 cm. Samples were taken and treated following standard 

guidelines for bottom macrofauna sampling (HELCOM, 1988). 

Data on the feeding habits of Baltic cod (Gadus morhua 

Linnaeus, 1758), flounder (Platichthys flesus Linnaeus, 1758) and 

viviparous eelpout (Zoarces viviparus Linnaeus, 1758) of different 

body length were collected and analysed by E. Bacevičius (Šiaulys et 

al., 2012). 

3.1.2 Lake Drūkšiai 

Lake Drūkšiai is located in the north-eastern part of Lithuania 

on the borderline with Belarus (Figure 8). Lake Drūkšiai belongs to 

the Dauguva river catchment area and outflows to the Baltic Sea via 

the 550 km long river continuum. The total area of the lake is 

nowadays about 49 km
2
 (6.7 km

2
 in Belarus, 42.3 km

2
 in Lithuania). 

The greatest depth of the lake is 33.3 m, and the average is 7.6 m 

(Jurgelevičienė et al., 1983; Mažeika et al., 2006). 

The lake has well developed littoral zone extended by eight 

islands. It constitutes up to 30% of the total lake area. The natural 

bottom sediments used to be dominated by sand and gravel (in the 

upper littoral), at depths more than 7 m – by saprogenic mud 

(Lithuanian State Scientific…, 1998). The functioning of the natural 

hydrochemical-sedimentation system of Lake Drūkšiai has been 

largely effected by the Ignalina Nuclear Power Plant (NPP) and the 

infrastructure of Visaginas town which was settled in 1975 for more 

than 4 000 NPP workers and their families. After two decades of the 

INPP operation, the muddy sediments constituted more than 65% of 

the bottom and this area tended to expand further (Lithuanian State 

Scientific…, 1998). 
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Figure 8. Distribution of underwater video sites in the lake Drūkšiai. 

 

Due to the complex (thermal and chemical) anthropogenic 

impact the following ecological zones have developed in Lake 

Drūkšiai (Mažeika et al., 2006; Nedveckaitė et al., 2011): 

• Zone A: The most eutrophicated south-eastern part of the 

lake, where the main source of eutrophication was the household 

effluents of the INPP and Visaginas town with an elevated amount of 

nutrients (N, P). Increased amount of plankton as well as enhanced 

activity of production-decomposition processes were observed in this 

area. Sometimes BOD5 reached 12.5 mg O2 l
-1

 in this most polluted 

area; 

• Zone B: The cooling water outflow zone was the area of the 

greatest thermal impact, where water temperature in many cases 
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exceeded 28°C. The lowest abundance and variety of most planktonic 

organisms (phytoplankton and zooplankton) as well as lower rates of 

primary production and more intensive decomposition processes of 

organic matter were observed in this area; 

• Zone C: The rest of the lake, including the deep and mediate-

deep zones, where the various impact factors have affected the 

ecosystem occasionally, depending on the INPP operation, wind 

direction, waves. 

 

3.1.2.1 Underwater video survey data  

A drop-down type underwater video system was used for the 

bottom video survey. System comprised of the underwater and control 

units. The underwater unit was equipped with depth sensor, laser 

pointers for scale estimation, 4x50 watt xenon light bulbs, color (540 

TVL) and black-white video cameras. Video from the underwater unit 

in real-time was transmitted into the control unit equipped with GPS 

antenna and overlay block, which allowed superimposing of GPS 

coordinates, depth sensor readings, current data and time into the 

video stream.  

During the filming process, the underwater unit was descended 

vertically and hovered freely over the bottom not touching it. 

Therefore the difference between position of the control unit with GPS 

antenna and actual position of underwater unit was within GPS 

accuracy error (5-15 meters according to the used GPS module 

specifications), no additional correction of geo reference data needed. 

Camera altitude was regulated manually from video stream to ensure 

the best video quality and varied between approximately 30-50 

centimetres above the bottom surface. 

Overall, video footage consisted from 21 video transect and 490 

video segments at the depth range from 0.5 to 10 m. Video analysis 

was performed by A. Šaškov (Zaiko et al., 2013). 

 

3.1.2.2 Environmental predictors used in models 

Three environmental predictors were selected for the model of 

the coverage of the invasive bivalve Dreissena polymorpha: depth, 
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wave exposure and slope. The exposure referred to the wind generated 

wave impact on the bottom expressed as Relative Exposure Index 

(REI), was calculated by wave exposure model WEMo 4.0 (Malhotra 

and Fonseca, 2007).  

 

3.1.2.3 Sampling of macrozoobenthos 

In total, 42 macrozoobenthos samples were taken in 2008 and 

2010. An Ekman-type grab (catch area 0.0225 m
2
) was used for 

benthic macrofauna sampling. At least one sample was taken 

randomly at every video sampling site. Each sample was sieved (0.5 

mm mesh size) and preserved (4% formaldehyde solution) on board. 

Once in the laboratory, the macrozoobenthos species were sorted out, 

identified and counted. Wet weight was determined to within 0.001g. 

Samples were collected and treated following standard guidelines for 

bottom macrofauna sampling (HELCOM, 1988). Analysis of samples 

was performed by A. Zaiko (Zaiko et al., 2013). 

3.2 Empirical models and modelling procedure 

In this work four species distribution models were selected in 

accordance to the most recent ecological studies (Wei et al., 2010; 

Reiss et al., 2011; Vincenzi et al., 2011; Downie et al., 2013; 

Sundblad et al., 2013): generalized additive models, multivariate 

adaptive regression splines, maximum entropy and random forests. 

3.2.1 Species distribution models 

Generalized additive models (GAM) 

GAMs are semi-parametric extensions of generalized linear 

models with the assumption that the functions are additive and that the 

components are smooth. This method deals well with the highly non-

linear and non-monotonic relationships between the set of explanatory 

and response variables (Guisan and Zimmerman, 2000). Model 

selection was based on penalized regression splines with default 

gamma-values and a maximum four degrees of freedom for 

continuous predictor variables in order to maintain ecologically 
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interpretable models (Wood and Augustin, 2002). The “mgcv” 1.7-9 

package (Wood, 2006) within R environment was used for occurrence 

and biomass distribution models. 

 

Multivariate adaptive regression splines (MARS) 

MARS algorithm is a nonparametric method for multiple 

regression, which uses adaptively selected spline functions (Hansen 

and Kooperberg, 2002) developed by Friedman (1991). MARS is 

based on linear relationships, however it identifies and estimates a 

model which coefficients differ depending on the level of the predictor 

variable (Reiss et al., 2011). Models were built using the GLM 

approach and specified to include first order interactions, where 

significant. Both occurrence and biomass distribution models were 

built using the “earth” package (Milborrow, 2012) under R 

environment. 

 

Maximum entropy (MaxEnt)  

MaxEnt is a general-purpose machine learning method which 

estimates a target probability distribution by finding the probability 

distribution of maximum entropy and constraining the expected value 

of each environmental variable to match its empirical average (Phillips 

et al., 2006; Reiss et al., 2011). In this study MaxEnt program version 

3.3.3e (Philips et al., 2006; Philips et al., 2008) was used. The 

convergence threshold was set at 10
−5

 and the maximum number of 

iterations at 500 to allow the algorithm to get close to convergence 

(Phillips et al., 2006). Although, MaxEnt works well with presence-

only datasets (Elith et al., 2011), absence data was also used in 

MaxEnt models to be more consistent with other methods. MaxEnt 

was used only for modelling the occurrence probability of species. 

 

Random Forests (RF) 

RF is a classification and regression model developed by 

Breiman (2001) that generates multiple classification trees with a 

randomised subset of predictors (Reiss et al., 2011). A large number 

of trees are grown and the number of predictors used to find the best 
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split at each node is a randomly chosen subset of the total number of 

predictors (Prasad et al., 2006). In this study the number of trees was 

set to 1000, the number of variables randomly selected at each node 

and minimum node size were set to default values. The “randomForest 

4.6-2” package (Liaw and Wiener, 2002) within the R environment 

was used for predictions of presence probability and biomass 

distribution of benthic species. 

 

3.2.2 Predictive performance, model variation and effects of 

data traits 

Several estimates are calculated for model validation: area 

under the receiver operating characteristic curve (AUC), root mean 

squared error (RMSE), root mean squared error normalised by range 

(NRMSE), mean absolute deviation (MAD), coefficients of variation 

(i.e. CVMAD), r – correlation between observed and predicted values, 

coefficient of determination (R
2
). 

Predictive performance of the species occurrence models was 

estimated by AUC measures. The AUC values range between 0 and 1. 

According Hosmer and Lemeshow (2000) “excellent” prediction 

performance is achieved when AUC > 0.9, “good” performance – 

AUC 0.7-0.9, “poor” performance – AUC < 0.7. If AUC is ≤ 0.5 then 

predictions are no better than random. For biomass distribution 

models two measures were estimated: NRMSE and R
2
. 

The accuracy of fish prey item biomass models was calculated 

by dividing CVMAD from 100. The accuracy of 100% means that 

predictions are without errors (impossible to achieve), 0% means that 

prediction error is equal to the sample average. 

The initial dataset was split into train set used for model build-

up (70% of data) and test set used for validation (rest 30% of data) 

ensuring that species prevalence (the ratio between sites where a 

particular species is present and total number of sites) would be in 

equal proportions in train and test datasets. The variance of model 

performance was assessed by mean values of 100 iterations of splits 

for each species. Variation is expressed by the coefficient of variation 
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CVAUC for occurrence models and CVNRMSE and CVR
2 for biomass 

distribution models.  

The effect of data traits, species prevalence and distribution 

range, on both predictive performance and model variation were tested 

using Pearson’s correlation between AUC, NRMSE, R
2
. The species 

distribution range was determined for each species using convex hull 

algorithm in Quantum GIS 1.7.4 (Quantum GIS Development Team, 

2010). The species prevalence and distribution range significantly 

correlated (r = 0.70, p < 0.01), therefore the effect of the species 

prevalence was tested on the predictive performance of models. 

3.3 Assessment of seabed quality for feeding of fish  

3.3.1 Scheme of the assessment 

The assessment procedure includes three parts: modelling of 

macrozoobenthos biomass (service provider module), analysis of fish 

prey items (service user module) and the output of the assessment: the 

seabed quality map for fish feeding (Figure 9). The first step is data 

acquisition: fish and macrofauna samples are gathered and processed, 

and then GIS layers of environmental factors (predictors) are created. 

The diets of the separate fish species are identified from an analysis of 

fish digestive tracts, after which biomass distribution models of prey 

items are set up on the basis of macrofauna sample analysis and layers 

of environmental predictors.  

In the next step, weights for prey items are assigned, depending 

on their importance to the diet of a particular fish species, and in 

parallel, model predictions are transferred into the GIS environment, 

where biomass distribution maps are developed. Finally, biomass 

maps of separate prey items with assigned weights are overlain and 

quality maps of fish feeding grounds are generated. In addition, the 

accuracy is assessed to identify the reliability of the maps. The data in 

the service user module are not directly related to the service provider 

module and can be modified in accordance with the aims of the study 

(i.e. feeding grounds of a single fish species). 
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Figure 9. General scheme of the assessment of seabed quality for feeding of 

fish. White – service provider module, grey – service user module, black – 

output of the approach. 

 

3.3.2 Occurrence and importance of prey items 

The occurrence and importance of prey items were inferred 

from the analysis of fish digestive tracts. The former describes the 

relative frequency of a particular prey in all digestive tracts, while the 

latter indicates how much a particular prey item contributes to the total 

content in a discrete digestive tract. Both parameters were divided into 

three categories: high, moderate and low. A ‘high’ occurrence means 

that a particular benthic animal is found in more than 50 % of 

samples, ‘moderate’ – in 20-50 % of samples and ‘low’ in < 20 % of 

samples. A ‘high’ importance means that most of the digestive tract 

can be filled with a particular prey species (more than 50 % of tract 

content), ‘moderate’ – 20-50 % of tract content, while ‘low’ means 

that a particular item is only a small addition to the whole tract content 
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(< 20 % of tract content). The occurrence and importance of prey 

items are shown in Table 1. As the study aimed to evaluate the quality 

of the seabed for the feeding of fish, the assessment was based only on 

benthic invertebrates, excluding nectobenthic species and small 

pelagic fish. 

 
Table 1. Occurrence in digestive tracts (first letter) and importance (second 

letter) of prey items for cod, flounder and eelpout. Empty cells indicate that 

fish do not prey on that particular item. H – high, M – moderate, L – low. 

  
Occurrence/Importance 

 
  Cod Flounder Eelpout 

P
re

y
 i

te
m

s 

Gammaridea H/H H/H H/M 

Halicryptus spinulosus 
 

M/M 
 

Hediste diversicolor M/L M/L M/L 

Macoma balthica 
 

H/H M/M 

Marenzelleria neglecta L/L L/L L/L 

Mya arenaria 
 

L/L 
 

Mytilus trossulus 
 

M/M L/L 

Saduria entomon H/H M/L M/L 

 

3.3.3 Development of seabed quality maps for the feeding of fish  

To predict the biomass distribution of prey species the Random 

forests regression modelling technique (Breiman, 2001) implemented 

in the “randomForest 4.6-2” package (Liaw and Wiener 2002) within 

the R environment was chosen. After the creation of biomass 

distribution rasters, maps of those prey items that a particular fish 

species feeds on were added up with different weights (Table 2). 

Weights are given according to the occurrence and importance shown 

in Table 1. Initial biomass values were multiplied by the weight in 

order to better reflect the important feeding items in the feeding 

ground map. As different multipliers were used, biomass units were 
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no longer suitable, so scores of weighted biomass was categorized into 

five levels of quality: very high, high, moderate, low and very low, 

where very high quality indicates the highest biomass aggregations of 

prey items with respect to their importance to fish diets. Finally, the 

maps for different fish species were combined and the map of overall 

seabed quality for the feeding of a given fish was produced. 

 
Table 2. Raster weights according to the occurrence and importance of prey 

items for fish feeding. H –high, M – moderate, L – low. 

Occurrence/Importance Weight 

H/H 1 

H/M or M/H 0.75 

M/M 0.5 

M/L or L/M 0.37 

L/L 0.25 

 

3.3.4 Accuracy of seabed quality maps 

Three levels of accuracy were generated for the quality map of 

fish feeding grounds. The accuracy indicated how well or badly 

different quartiles of a predictor range were covered by macrofauna 

samples. First of all, the accuracy of biomass distribution of each prey 

item was estimated. In relation to partial plots, every predictor was 

split into four intervals/categories (predictors with presence/absence 

data were split into two) and the number of macrofauna samples was 

counted for each interval/category. Since 171 samples were used for 

the model build up, 171 was the total point pool split between 

intervals/categories of a single predictor. Then the ‘Reclassify’ 

function was used to reclassify the predictor layer assigning these 

points for all intervals/categories. These point scores were multiplied 

by the mean decrease accuracy value (Table 13) produced by the 

model. In this way the accuracy of the most important predictor 

receives the highest weight and minor predictors had a proportionally 

lower impact on overall accuracy. Finally, the accuracy layers of 

every prey item were added up, then split into three categories (high, 
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moderate, low) using the geometrical interval classification method; 

ultimately, an accuracy layer for the feeding grounds was produced. 

A ‘high’ accuracy is interpreted as the best possible area 

modelled with the current dataset, though validation errors must still 

be taken into account. Areas of ‘moderate’ accuracy should be treated 

as trustworthy, although they should be studied more closely before 

making a decision. A ‘low’ accuracy indicates areas that are modelled 

on the basis of just a few samples and should be treated with caution. 

3.4 Biological valorisation approach 

The concept of biological valuation of the marine environment 

was developed by Derous et al. (2007) and was followed by the 

biological valorisation methodology for the assessment of the seabed 

introduced by Węsławski et al. (2009).  

 

3.4.1 Assigning biological value to benthic communities 

Biological value for benthic species is assigned according ten 

features given in the questionnaire (Table 3). Highest feature value (3 

points) is given for habitat builders and long-living species with 

relatively low regeneration time. Moderate value (2 points) is given 

for key species, rare species and species specific to a single habitat. 

Lowest value (1 point) is assigned for bioturbators, filter feeders, 

native species and species sensitive to mechanical disturbance and 

oxygen depletion.  

The scores of biological value for benthic species according the 

questionnaire (Table 3) are given in Table 4. The scores are adapted 

from Węsławski et al. (2009). For these species which were not 

included in the original study, thus were evaluated independently. 
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Table 3. A questionnaire for biological valuation of species (after Węsławski 

et al. 2009). 

Question Explanation Weight 

1. Is the species a 

habitat builder? 

A perennial, encrusting, erect, 

large species that provides shelter 

for other species 

3 

2. Is the generation 

time over 2 years? 

A long-lived species will 

regenerate slowly after disturbance 
3 

3. Is it a key species? A species that is a major predator 

or an important food item, placed 

centrally in the food web or 

primary production 

2 

4. Is the species 

rare? 

A species that is encountered in 

single locations and/or as single 

specimens only 

2 

5. Is the species 

specific to one 

habitat only? 

A species that has a narrow niche 

and is strongly linked to specific 

physical conditions 

2 

6. Is the species a 

bioturbator? 

A species that stirs up the 

sediment, enhancing oxygen 

exchange 

1 

7. Is the species a 

filter feeder? 

A species that removes particles 

from the water, thereby enhancing 

transparency 

1 

8. Is the species 

native? 

A native species is natural to the 

area, unlike a non-indigenous one 
1 

9. Is the species 

sensitive to 

mechanical 

disturbance? 

A sessile, crustose species is 

vulnerable to siltation and rapid 

water dynamics 
1 

10. Is the species 

sensitive to oxygen 

depletion? 

A species that is sensitive to 

oxygen depletion is most 

vulnerable to environmental stress 

1 
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Table 4. Scores of species biological valuation according the questionnaire 

(Table 3). Q1-Q10 represent questions of the questionnaire. * indicates 

species that were evaluated independently from the original methodology. 

Taxon Score Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 

Furcellaria lumbricalis* 12 3 3 2 0 2 0 0 1 1 0 

Mytilus trossulus 11 3 3 2 0 0 0 1 1 1 0 

Mya arenaria 10 0 3 2 0 0 1 1 1 1 1 

Saduria entomon 10 0 3 2 0 2 1 0 1 1 0 

Polysiphonia nigrescens* 10 3 3 2 0 0 0 0 1 1 0 

Cladophora rupestris* 10 3 3 2 0 0 0 0 1 1 0 

Macoma balthica 9 0 3 2 0 0 1 1 1 1 0 

Cerastoderma lamarcki 7 0 3 0 0 0 0 1 1 1 1 

Ceramium spp.* 7 3 0 2 0 0 0 0 1 1 0 

Balanus improvisus 6 3 0 0 0 0 0 1 0 1 1 

Bathyporeia pilosa 6 0 0 2 0 2 0 0 1 0 1 

Pontoporeiids 6 0 0 0 2 2 0 0 1 0 1 

Corophium volutator 6 0 0 2 0 0 0 1 1 1 1 

Idotea balthica 5 0 0 2 0 0 0 0 1 1 1 

Pilayella littoralis* 5 3 0 0 0 0 0 0 1 1 0 

Ostracoda undet.* 5 0 0 0 0 0 1 1 1 1 1 

Fabricia sabella 4 0 0 2 0 0 0 1 1 0 0 

Gammarus spp. 4 0 0 2 0 0 0 0 1 0 1 

Halicryptus spinulosus 4 0 0 2 0 0 1 0 1 0 0 

Hediste diversicolor 4 0 0 2 0 0 1 0 1 0 0 

Bylgides sarsi* 3 0 0 2 0 0 0 0 1 0 0 

Jaera albifrons 3 0 0 0 0 0 0 0 1 1 1 

Marenzelleria neglecta 3 0 0 2 0 0 1 0 0 0 0 

Oligochaeta undet. 3 0 0 2 0 0 0 0 1 0 0 

Pygospio elegans 3 0 0 2 0 0 0 0 1 0 0 

Hydrobia sp. 2 0 0 0 0 0 0 0 1 0 1 

Streblospio shrubsolii* 2 0 0 0 0 0 1 0 1 0 0 

Theodoxus fluviatilis 2 0 0 0 0 0 0 0 1 0 1 
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Biological valorisation of LMA was made using the same 

dataset described in section 3.1.1.3 (Figure 7). Additional data on 

macrofitobenthos were added for the relevant sites. Benthic 

communities were distinguished based on biomass dominance 

(Olenin, 1997). Every community gained a specific biological value 

based on three criteria (score range 1-4): species richness, biological 

value of present species and the size of a habitat. The scores of these 

three criteria are added up and the overall biological value of a 

particular community is estimated. 

The score of species richness was estimated in the following 

way. The total number of species in the research area is divided into 

quartiles. Scores ranging from 1 to 4 are assigned for intervals 

separated by these quartiles. The score for a particular benthic 

community depends on the total number of species in the community 

(Table 5). 

Similarly to species richness, the total biological value of all the 

species in the research area is also divided into quartiles. The scores 

from 1 to 4 are assigned depending on the total value of all the species 

occurring in the particular community. For example, if the sum of 

biological values of all species in the community is more than 75 % of 

the total biological value of all the species in the research area, then 

the community scores 4 points. Respectively, 50-75 % scores 3 points, 

25-50 % scores 2 points and less than 25 % scores 1 point (Table 5). 

 
Table 5. Scores for three components of biological valorisation: number of 

species, sum of biological values of species and habitat size. Each component 

can contribute 1-4 points to the value of the community. 

Score 

points 

Total number of species 

in the community 

The sum of species 

biological values  

Habitat 

size, km
2
  

4 21-28 120-159 < 50 

3 14-20 80-119 50-200 

2 7-13 40-79 200-500 

1 ≤ 6 ≤ 39 > 500 
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According to the original methodology, smaller habitats 

contribute to the higher biological value for associated communities. 

The size of a habitat was estimated combining results from the 

questionnaire for Baltic marine experts on the Red List assessments of 

the Baltic Sea biotopes/habitats and calculation of areas between the 

same community sites using GIS. The categories of scores are given in 

Table 5. 

3.4.2 Assignment of biological values for research sites 

Three components of the biological value are estimated based 

on all samples that belong to the specific community. In other words, 

it is a maximum value that a particular sample can acquire depending 

on the overall score of the community. However, different samples of 

the same community vary in both species richness and biomass, 

meaning that some of them represent healthy and prosperous 

community, while others reflect a poor state. For this reason the 

quality of communities is classified into four types: optimal, good, fair 

and poor. Only those sites which represent the optimal state of the 

community get the maximum value estimated based on the three 

components mentioned above. Values for good, fair and poor state are 

corrected according to the ratio between species richness in the whole 

community and the particular site, together with ratio between 

maximum biomass of the community and the biomass at the research 

site. Quality classes were distinguished based on quartiles as 

explained in section 3.4.1. Corrected biological values for different 

quality classes are given in Table 6. The final biological value is the 

average of species richness and biomass values. 
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Table 6. Assignment of biological values for sites depending on the quality of the community.  

Max value 

of the 

community 

Species richness  

of the community 

Maximum biomass  

in the community 

>75 % 50-75 % 25-50 % <25 % >75 % 50-75 % 25-50 % <25 % 

Optimal Good Fair Poor Optimal Good Fair Poor 

12 12 9 6 3 12 9 6 3 

11 11 8.25 5.5 2.75 11 8.25 5.5 2.75 

10 10 7.5 5 2.5 10 7.5 5 2.5 

9 9 6.75 4.5 2.25 9 6.75 4.5 2.25 

8 8 6 4 2 8 6 4 2 

7 7 5.25 3.5 1.75 7 5.25 3.5 1.75 

6 6 4.5 3 1.5 6 4.5 3 1.5 

5 5 3.75 2.5 1.25 5 3.75 2.5 1.25 

4 4 3 2 1 4 3 2 1 

3 3 2.25 1.5 0.75 3 2.25 1.5 0.75 

 

4
3
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4 RESULTS 

4.1 Comparative analysis of macrozoobenthos species 

distribution modelling 

4.1.1 Application of occurrence models 

All four compared methods on average achieved “good” 

predictive performance for occurrence models (Figure 10). 

 

Figure 10. Performance of four predictive methods for modelling of the 

occurrence of benthic invertebrates according area under the curve (AUC) 

values (left) and coefficients of variation of AUC during 100 of iterations 

(right). 

 

The highest performance was achieved by RF (AUC = 0.87 ± 

0.06), followed by GAM (AUC = 0.84 ± 0.06), MARS (AUC = 0.80 ± 

0.06) and MaxEnt (AUC = 0.77 ± 0.11). RF models were also the 

most consistent ranging from “good” to “excellent” performance 

(AUC = 0.78-0.96), closely followed by GAM (AUC = 0.74-0.95) and 

MARS (AUC = 0.70-0.95), while MaxEnt (AUC = 0.56-0.93) had six 

cases of “poor” predictive performance. According to coefficients of 

variation of AUC the most consistent method was again RF (CVAUC = 

0.05±0.02), closely followed by MaxEnt (CVAUC = 0.06±0.02) and 
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GAM (CVAUC = 0.06±0.03), while MARS (CVAUC = 0.09±0.04) 

varied the most. 

RF models of occurrence achieved top performance among all 

methods for 19 species, followed by GAM (6 species), MARS and 

MaxEnt (1 species per each). MaxEnt and MARS showed the worst 

performance for 14 and 10 species respectively), whereas for GAM 

and RF that was never the case (Table 7). Overall predictions of the 

occurrence were excellent (AUC > 0.9) for eight species or higher 

taxa: Halicryptus spinulosus, Mytilus trossulus, Saduria entomon, 

Fabricia sabella, Idotea balthica, Jaera albifrons, Ostracoda, 

Monoporeia affinis and Theodoxus fluviatilis, however only ostracods 

were predicted excellent by all four methods. 

4.1.2 Application of biomass distribution models 

Figure 11 indicates that the mean prediction error of all three 

methods for the biomass distribution was very similar (NRMSE = 

0.08± 0.04) among the methods. According to the coefficient of 

determination (R
2
) the best mean performance was achieved by RF 

(R
2
 = 0.32 ± 0.19), followed by MARS (R

2
 = 0.13 ± 0.14) and GAM 

(R
2
 = 0.12 ± 0.12). 

 
Figure 11. Performance of three predictive methods for modelling of the 

distribution of benthic invertebrates biomass according root mean square 

error normalized by range (NRMSE) and coefficient of determination (R
2
) 

values. 
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Table 7. Validation results of four predictive modelling methods for occurrence and biomass distribution of 23 

benthic species or higher taxa in Lithuanian marine area. AUC – area under the curve, NRMSE – root mean 

square error normalized by range, R
2
 – coefficient of determination, Prev. – prevalence. 

Phylum, 

class, order, 

family Species, taxa  

GAM MARS RF MaxEnt 
Prev. 

AUC NRMSE R2 AUC NRMSE R2 AUC NRMSE R2 AUC 

Priapulida 
Halicryptus 

spinulosus 
0.89 0.08 0.19 0.88 0.06 0.32 0.91 0.06 0.46 0.79 0.33 

Polychaeta             

Nereidae Hediste diversicolor 0.76 0.15 0.08 0.79 0.15 0.11 0.79 0.15 0.41 0.60 0.68 

Polynoidae Bylgides sarsi 0.80 0.07 0.01 0.74 0.08 0.01 0.79 0.06 0.14 0.75 0.19 

Sabellariidae Fabricia sabella 0.92 0.07 0.07 0.84 0.08 0.11 0.95 0.06 0.19 0.91 0.10 

Spionidae 
Marenzelleria 

neglecta 
0.80 0.10 0.15 0.77 0.10 0.12 0.81 0.10 0.28 0.56 0.81 

 Pygospio elegans 0.83 0.08 0.01 0.79 0.08 0.01 0.80 0.08 0.14 0.61 0.69 

 
Streblospio 

shrubsolii 
0.87 0.05 0.03 0.78 0.05 0.03 0.87 0.06 0.11 0.83 0.07 

Oligochaeta Oligochaeta undet. 0.77 0.04 0.05 0.77 0.05 0.01 0.82 0.04 0.08 0.65 0.59 

Crustacea             

Amphipoda Bathyporeia pilosa 0.82 0.05 0.06 0.79 0.05 0.02 0.86 0.04 0.46 0.79 0.22 

 Corophium volutator 0.84 0.10 0.07 0.84 0.09 0.17 0.86 0.04 0.25 0.73 0.39 

 Gammarus spp. 0.81 0.09 0.13 0.76 0.08 0.15 0.83 0.09 0.45 0.75 0.29 

 Monoporeia affinis 0.88 0.08 0.06 0.83 0.09 0.03 0.90 0.04 0.18 0.80 0.15 

4
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Cirripediae 
Balanus improvisus 0.89 0.06 0.31 0.81 0.05 0.30 0.89 0.05 0.55 0.84 0.22 

Isopoda Idotea balthica 0.79 0.07 0.06 0.77 0.07 0.01 0.87 0.06 0.04 0.93 0.03 

 Jaera albifrons 0.93 0.06 0.10 0.78 0.06 0.03 0.93 0.04 0.36 0.88 0.15 

 Saduria entomon 0.92 0.14 0.32 0.92 0.15 0.35 0.94 0.15 0.71 0.83 0.31 

Ostracoda Ostracoda undet. 0.95 0.06 0.15 0.95 0.07 0.07 0.96 0.05 0.38 0.92 0.10 

Gastropoda             

Hydrobiidae Hydrobia sp. 0.76 0.09 0.02 0.75 0.09 0.04 0.78 0.09 0.13 0.70 0.38 

Neritidae Theodoxus fluviatilis 0.93 0.07 0.09 0.82 0.06 0.01 0.91 0.05 0.23 0.90 0.14 

Bivalvia             

Cardiidae 
Cerastoderma 

lamarcki 
0.74 0.07 0.06 0.70 0.06 0.07 0.80 0.05 0.17 0.73 0.13 

Myidae Mya arenaria 0.82 0.07 0.02 0.80 0.07 0.06 0.89 0.05 0.43 0.69 0.48 

Mytilidae Mytilus trossulus 0.86 0.15 0.38 0.80 0.15 0.42 0.90 0.17 0.55 0.82 0.25 

Tellinidae Macoma balthica 0.84 0.15 0.40 0.80 0.15 0.43 0.85 0.15 0.63 0.59 0.76 

 

4
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As shown in Figure 12 the R
2
 of biomass distribution models by 

RF was the most consistent (CVR
2
 = 0.45±0.29), but with the highest 

variance of NRMSE (CVNRMSE = 0.80±0.39). GAMs were relatively 

consistent according to R
2
 (CVR

2
 = 0.88±0.41) and NRMSE (CVNRMSE 

= 0.52±0.25), while the models of MARS were consistent in respect of 

NRMSE (CVNRMSE = 0.51±0.23), but with the high variance in R
2
 

(CVR
2
 = 1.30±0.77). 

 

 
Figure 12. Coefficients of variation of root mean square error normalized by 

range (NRMSE) and coefficient of determination (R
2
) of four predictive 

modelling methods during 100 iterations. 

 

According coefficient of determination RF was the best in 

predicting biomass distribution for all species except one, while GAM 

and MARS had the worst predictive performance for 14 and 12 

species respectively (Table 7). The most accurate predictions for the 

distribution of biomass were recorded for Balanus improvisus, 

Macoma balthica, M. trossulus and S. entomon (R
2
 > 0.5). 

4.1.3 Effects of data traits 

The correlation between the prevalence and AUC values were 

negative for all methods, whereas correlation between prevalence and 

both NRMSE and R
2
 were always positive (Table 8).  
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Table 8. A correlation matrix of the performance of four predictive modelling 

methods and species prevalence. AUC – area under the curve, NRMSE – root 

mean square error normalized by range, R
2
 – coefficient of determination. 

 AUC NRMSE R2 

 

G
A
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M
A

R
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R
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M
ax
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A

M
 

M
A

R
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R
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G
A

M
 

M
A

R
S

 

R
F

 

GAM 1     1    1   

MARS 0.76 1    0.97 1   0.93 1  

RF 0.90 0.76 1   0.92 0.92 1 0.81 0.79 1 

MaxEnt 0.66 0.39 0.75 1         

Preva-

lence -0.41 -0.13 -0.51 -0.92 0.47 0.45 0.45 0.15 0.23 0.20 

 

This indicates that methods tend to predict occurrence better 

with less occasions of species presence. While this effect was very 

weak for MARS (r = -0.13, p > 0.05) and moderate for GAM and RF 

(r = -0.41 and r = -0.51 respectively, p < 0.05), MaxEnt models had a 

very strong negative correlation with prevalence. On the contrary, 

performance of biomass distribution models tend to get better with 

increasing prevalence, however this effect was moderate in case of 

NRMSE and only weak-very weak in case of R
2
. Detailed results for 

the separate macrozoobenthos species are given in Table 9. 
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Table 9. The performance of the occurrence models (based on AUC values) 

and their relation to the species prevalence. Figures in bold – “excellent” 

performance, normal – “good” performance, bold italic – “poor” 

performance. 

  GAM MARS RF MaxEnt Prevalence 

M. neglecta 0.80 0.77 0.81 0.56 0.81 

M. balthica 0.84 0.80 0.85 0.59 0.76 

P. elegans 0.83 0.79 0.80 0.61 0.69 

H. diversicolor 0.76 0.79 0.79 0.60 0.68 

Ologochaeta undet. 0.77 0.77 0.82 0.65 0.59 

M. arenaria 0.82 0.80 0.89 0.69 0.48 

C. volutator 0.84 0.84 0.86 0.73 0.39 

Hydrobia sp. 0.76 0.75 0.78 0.70 0.38 

H. spinulosus 0.89 0.88 0.91 0.79 0.33 

S. entomon 0.92 0.92 0.94 0.83 0.31 

Gammarus spp. 0.81 0.76 0.83 0.75 0.29 

M. trossulus 0.86 0.80 0.90 0.82 0.25 

B. improvisus 0.89 0.81 0.89 0.84 0.22 

B. pilosa 0.82 0.79 0.86 0.79 0.22 

H. sarsi 0.80 0.74 0.79 0.75 0.19 

M. affinis 0.88 0.83 0.90 0.80 0.15 

J. albifrons 0.93 0.78 0.93 0.88 0.15 

T. fluviatilis 0.93 0.82 0.91 0.90 0.14 

C. lamarcki 0.74 0.70 0.80 0.73 0.13 

F. sabella 0.92 0.84 0.95 0.91 0.10 

Ostracoda undet. 0.95 0.95 0.96 0.92 0.10 

S. shrubsolii 0.87 0.78 0.87 0.83 0.07 

I. balthica 0.79 0.77 0.87 0.93 0.03 
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Low to moderate negative correlations (r ≤ -0.51) were 

determined between prevalence and coefficients of variation of 

models except MaxEnt (Table 10), meaning that consistency of 

predictions during iterations increases with decreasing occasions of 

species occurrence. MARS was the most sensitive in case of 

occurrence models, whereas biomass distribution models showed 

similar results for all SDMs. 

 
Table 10. Correlation matrix of the variation of performance of four 

predictive modelling methods and species prevalence. AUC – area under the 

curve, NRMSE – root mean square error normalized by range, R
2
 – 

coefficient of determination. 

 AUC NRMSE R2 
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CVGAM 1       1    1   

CVMARS 0.77 1    0.95 1   0.70 1  

CVRF 0.76 0.62 1   0.71 0.73 1 0.59 0.82 1 

CVMaxEnt 0.34 0.12 0.68 1        

Preva-
lence -0.17 -0.46 -0.01 0.09 -0.41 -0.43 -0.51 -0.22 -0.48 -0.46 

 

Detailed results for the separate macrozoobenthos species are 

given in Table 11. 
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Table 11. The performance of the biomass distribution models (based on R
2 

values) and their relation to the species prevalence. Figures in bold – R
2
 > 

0.5, normal – R
2
 = 0.1-0.5, bold italic – R

2
 < 0.1. 

  GAM MARS RF Prevalence 

M. neglecta 0.15 0.12 0.28 0.81 

M. balthica 0.40 0.43 0.63 0.76 

P. elegans 0.01 0.01 0.14 0.69 

H. diversicolor 0.08 0.11 0.41 0.68 

Ologochaeta undet. 0.05 0.01 0.08 0.59 

M. arenaria 0.02 0.06 0.43 0.48 

C. volutator 0.07 0.17 0.25 0.39 

Hydrobia sp. 0.02 0.04 0.13 0.38 

H. spinulosus 0.19 0.32 0.46 0.33 

S. entomon 0.32 0.35 0.71 0.31 

Gammarus spp. 0.13 0.15 0.45 0.29 

M. trossulus 0.38 0.42 0.55 0.25 

B. improvisus 0.31 0.30 0.55 0.22 

B. pilosa 0.06 0.02 0.46 0.22 

H. sarsi 0.01 0.01 0.14 0.19 

M. affinis 0.06 0.03 0.18 0.15 

J. albifrons 0.10 0.03 0.36 0.15 

T. fluviatilis 0.09 0.01 0.23 0.14 

C. lamarcki 0.06 0.07 0.17 0.13 

F. sabella 0.07 0.11 0.19 0.10 

Ostracoda undet. 0.15 0.07 0.38 0.10 

S. shrubsolii 0.03 0.03 0.11 0.07 

I. balthica 0.06 0.01 0.04 0.03 
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4.2 Assessment of benthic habitat quality in terms of fish 

food provision 

4.2.1 Diet composition of cod, flounder and eelpout 

Eight macrozoobenthos species or higher taxa were identified 

during the analysis of fish stomach contents (Table 1). Cod mainly 

preyed upon isopods S. entomon and gammarideans, while polychaete 

worms were of minor importance. Preferred prey items for flounder 

and eelpout were gammarideans and bivalves M. balthica, while 

priapulids H. spinulosus and soft-shell clams M. arenaria were eaten 

only by flounder. Flounder had the most diverse diet composition (a 

total of eight prey items), while eelpout and cod preyed upon six and 

four prey items respectively. Half of the prey items were eaten by all 

three species, while two items (H. spinulosus and M. arenaria) were 

exclusively fed on by flounder. Different weights were assigned to 

every fish species separately according to the occurrence and 

importance of prey items (Table 12). 

 
Table 12. Weight multipliers of prey items assigned according to occurrence 

and importance. Empty cells indicate that fish do not prey upon that 

particular item. 

  
Cod Flounder Eelpout 

P
re

y
 i

te
m

s 

Gammaridea 1 1 0.75 

Halicryptus spinulosus 

 

0.5 

 Hediste diversicolor 0.37 0.37 0.37 

Macoma balthica 

 

1 0.5 

Marenzelleria neglecta 0.25 0.25 0.25 

Mya arenaria 

 

0.25 

 Mytilus trossulus 

 

0.5 0.25 

Saduria entomon 1 0.37 0.37 
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4.2.2 Importance of environmental predictors 

In general, for the predictions of fish prey items, the most 

important predictor was near-bottom oxygen level. Orbital velocity, 

salinity and sediments were also important, near-bottom current 

velocity were less important, temperature had only a minor 

importance or no importance at all in some cases. 

The mean decrease accuracy (%IncMSE) was calculated for 

each predictor in order to evaluate its importance to the response 

variable (Table 13). The most important predictor was near-bottom 

oxygen concentration, especially for deep-living species like 

M. balthica, S. entomon and H. spinulosus (28.7, 12.1 and 24.6 

%IncMSE respectively). Orbital velocity, salinity and sediments were 

also important: the biomasses of amphipods and M. trossulus were 

mostly dependent on sediments (9.3 and 34.8 %IncMSE respectively), 

while salinity had a major influence on both polychaete worms and 

M. balthica, and orbital velocity on H. spinulosus and S. entomon 

(12.7 and 18.9 respectively).  

 
Table 13. Mean decrease accuracy (%IncMSE) of environmental predictors. 

A higher value indicates greater importance. H.s. – H. spinulosus, Gam. – 

Gammaridea, M.n. – M. neglecta, H.d. – H. diversicolor, M.t. – M. trossulus, 

M.a. – M. arenaria, M.b. – M. balthica, S.e. – S. entomon. 

Predictors Gam. H.d. H.s. M.a. M.b. M.t. M.n. S.e. 

Current velocity 3.8 6.4 3.5 7.6 22.4 3.9 0.5 7.2 

Orbital velocity 2.4 12.0 12.7 6.9 18.0 9.6 7.9 18.9 

Salinity 6.7 16.3 3.8 0.2 25.1 17.0 7.4 15.0 

Oxygen concentration 7.1 10.7 12.1 9.2 28.7 16.1 3.9 24.6 

Sediment types 9.3 3.8 7.7 0.7 22.2 34.8 4.7 10.1 

Halocline 0.4 3.2 5.5 4.6 -1.4 1.4 1.3 6.3 

Thermocline 1.8 2.7 0.4 -4.2 14.4 10.4 0.7 5.8 

 

Detailed dependencies between predictors and response 

variables are shown in Figure 13.  
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Figure 13. Partial plots between numerical environmental predictors and 

modelled species. X-axis: predictor values; Y-axis: biomass, g m
-2

. 
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4.2.3 Validation of models 

Output validation values of all models are given in Table 14. 

Highest prediction errors (MAD) were estimated for bivalves 

M. trossulus and M. balthica (223.5 and 26.4 respectively, lowest for 

priapulid and polychaete worms H. spinulosus and H. diversicolor 

(0.1 and 1.4 respectively). This is expected because higher average or 

range values generate bigger MAD, so MAD says little about model 

performance in the context of other models if we do not take the 

average into account. For this reason CVMAD are calculated. 

 
Table 14. Validation results of prey item biomass models. Columns from left 

to right: prey items; average sample biomass ± standard deviation; mean 

absolute deviation (MAD); coefficient of variation of MAD (CVMAD); 

correlation of observations and predictions. 

Prey items 

Mean biomass 

g m
-2

 

 Validation  

MAD 

g m
-2

 

CVMAD 

% 

r 

 

Gammaridea 7.8±16.3 2.6 33.2 0.67 

Hediste diversicolor 2.0±3.2 1.4 71.2 0.64 

Halicryptus spinulosus 0.3±1.1 0.1 38.1 0.68 

Mya arenaria 6.5±17.4 3.0 46.3 0.65 

Macoma balthica 43.4±53.8 26.4 60.9 0.79 

Mytilus trossulus 1385.4±1398.9 223.5 16.1 0.74 

Marenzelleria neglecta 3.8±9.4 2.7 70.1 0.53 

Saduria entomon 5.6±5.8 1.8 32.6 0.84 

 

If we put CVMAD values of all models together (Figure 14) it is 

possible to compare their errors/accuracies. The most accurate model 

was of M. trossulus. This is probably because this mollusc strictly 

occurs only on hard substrate and usually in high biomass thus making 

an easier task for the predictive model. Models of S. entomon, 

Gammarus spp., H. spinulosus and M. arenaria were also quite 

accurate (accuracy >50%). The model of M. balthica was less accurate 
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(<40%), the lowest accuracy was estimated for polychaete models 

(<30%) probably due to their patchy distribution. 

 

 
Figure 14. Accuracy and coefficients of variation of mean absolute 

deviation(CVMAD) for all models. Accuracy of 100% means that predictions 

are without errors (impossible to achieve), 0% means that prediction error is 

equal to the sample average. 

 

4.2.4 Seabed quality for feeding of fish 

The high quality areas of the seabed for the feeding of Baltic 

cod (Figure 15) are distributed down to 50 meter depth, while 60 

meter isobath almost perfectly separates important areas from 

unimportant. One of the most important areas in the northern part of 

the coastal zone is determined by hard substrate seafloor. Other two 

very important areas are situated in the central and westernmost part 

of LMA. These two are mostly determined by high biomass of glacial 

relict S. entomon.  
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The most important area for the feeding of flounder is situated 

in the Northern part of the coastal zone (Figure 16). This area is 

determined by high biomass of hard-substrate associated blue mussel 

M. trossulus, even if this mollusc is moderately important for the 

feeding of flounder. However, flounder is present down to 80 meters 

or more, so in order to delineate important areas in the offshore zone 

M. trossulus were excluded from the map (small map in Figure 16). 

This map shows that the most important soft bottom areas are 

distributed from 20 down to 60 meter depth. Shallower areas are 

mostly determined by infaunal clams and polychaetes, while deeper 

ones by M. balthica and S. entomon. 

The most important areas for feeding of eelpout (Figure 17) are 

very similar to the flounder case, probably because of similar diet 

composition. However, eelpout is a coastal fish so the focus must be 

on near-shore zone before delineating areas of importance. It is 

obvious that most important areas for eelpout are coastal hard 

substrate area from 5 down to 20 meter depth situated in the North-

eastern part of LMA. It is hard to delineate important areas in soft-

bottom seafloor (small map in Figure 17) due to more or less 

homogeneous distribution of prey items. 

The highest quality feeding grounds for all three fish species is 

the stony bottom in the coastal area situated in the northern part of 

LMA. Other high quality areas are located in the offshore zone: one in 

an offshore bank with heterogeneous sediments at 50 m depth 

(western part of LMA), another in the soft bottom at 40-50 m depths 

(central part of LMA). The total area of these habitats comprise 7.6 % 

of LMA. 
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Figure 15. Seabed quality for feeding of Baltic cod based on the biomass distribution of prey items. 
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Figure 16. Seabed quality for feeding of European flounder based on the biomass distribution of prey items. 

Smaller map shows the same importance excluding Mytilus trossulus. 
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Figure 17. Seabed quality for feeding of viviparous eelpout based on the biomass distribution of prey items. 

Smaller map shows the same importance excluding Mytilus trossulus. 
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Figure 18. Map of seabed quality in the Lithuanian Economic Zone for the feeding of Baltic cod, European 

flounder and viviparous eelpout (with an accuracy assessment). 
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4.2.5 Accuracy of fish feeding ground maps 

 

The accuracy assessment of fish feeding ground maps based on 

the number of field samples per category or interval of every 

environmental predictor is shown in Table 15.  

 
Table 15. Number of field samples per category or interval of environmental 

predictor 

 
 

The accuracy assessment indicates that the most accurate areas 

of the approach are at 10-40 m depths. The low accuracy areas were 

justified by only 18% of total samples and were set in very shallow 

areas (down to 3 m depth) and for the deepest areas (> 60-70 m). 

Category/interval Mytilus

SEDIMENTS boulders 21 24 24 22 23 21 22 23

cobbles/gravel 16 12 16 14 14 18 15 16

sand 96 95 88 99 83 88 96 96

silt 38 40 43 36 45 44 38 36

THERMOCLINE absence 140 142 137 145 131 131 136 135

presence 31 29 34 26 34 40 35 36

HALOCLINE absence 164 159 159 159 153 158 160 47

presence 7 12 12 12 12 13 11 124

NEAR-BOTTOM 0 26 33 33 33 33 38 36 35

CURRENT 0-0.01 141 135 135 134 129 130 131 131

VELOCITY 0.01-0.02 1 0 1 1 1 1 1 1

0.02-0.03 3 3 2 3 2 2 3 4

>0.03 0 0 0 0 0 0 0 0

ORBITAL 0 14 13 17 15 32 16 11 11

VELOCITY 0-0.2 121 124 125 124 106 131 127 128

0.2-0.4 21 19 15 18 14 15 20 20

0.4-0.6 15 15 14 14 13 9 13 12

>0.6 0 0 0 0 0 0 0 0

SALINITY <4.8 0 0 0 0 0 0 0 0

4.8-5.4 12 14 7 10 6 12 11 11

5.4-6.0 19 20 15 18 15 17 19 16

6.0-6.6 39 36 36 39 42 38 37 38

6.6-7.2 101 101 113 104 102 104 104 106

>7.2 0 0 0 0 0 0 0 0

NEAR-BOTTOM <0.9 0 0 0 0 0 0 0 0

OXYGEN 0.9-2.06 3 2 2 2 1 2 2 3

2.06-3.22 3 4 4 5 6 6 4 4

3.22-4.38 19 27 24 26 22 24 26 22

4.38-5.53 146 138 141 138 136 139 139 142

>5.53 0 0 0 0 0 0 0 0

Halicryptus Gammarus Marenzelleria Hediste Mya Macoma Saduria
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Accuracy was moderate for offshore areas in the central part of LMA 

and for the coastal area. More than half the samples were taken in the 

coastal area, but because of the rapid changes in some environmental 

parameters (especially salinity and near-bottom orbital velocity) the 

quartiles of these predictors were only moderately justified in terms of 

accuracy. 

 

4.3 Biological valorisation of the seabed in LMA 

 

4.3.1 Biological values of benthic communities 

In total, 10 benthic communities were identified in the research 

area (Table 16 and Table 17). Nine of them are dominated by 

macrozoobenthos species and one by marcophytobenthos. Two 

communities were associated with hard bottoms (F. lumbricalis and 

M. trossulus/B. improvisus), while other eight were occurring in soft 

bottoms. Biological values of benthic communities were estimated 

according 3 components: species richness, biological value of species 

in the community and the habitat size (Table 16). 
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Table 16. Biological value of benthic communities based on three components: species richness, the sum of 

biological values of species and the size of a habitat.  

Community 

Species 

richness 

Component 

value 

Species 

value 

Component 

value 

Habitat 

size, km
2
 

Component 

value Total value 

F. lumbricalis 23 4 115 4 15 4 12 

C. lamarcki 13 2 55 2 25 4 8 

M. balthica 21 4 81 3 3000 1 8 

M. trossulus/ 

B. improvisus 
18 3 77 3 300 2 8 

M. arenaria 12 2 49 2 180 3 7 

M. neglecta/ 

B. pilosa 
12 2 49 2 80 3 7 

H. diversicolor 11 2 32 2 250 2 6 

P. elegans 9 2 51 2 250 2 6 

Pontoporeiids 4 1 15 1 150 3 5 

B. sarsi 3 1 12 1 300 2 4 

6
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According to the species richness, the most valuable 

communities were F. lumbricalis and M. balthica with 23 and 21 

species or higher taxa respectively. The lowest species richness was in 

the communities of Pontoporeiids and B. sarsi, were less than 4 

species were present. The highest biological value of species was in 

the community of F. lumbricalis, while the lowest for the 

communities of Pontoporeiids and B. sarsi. The smallest habitats (thus 

the most valuable) was estimated for the communities of 

F. lumbricalis (15 km
2
) and C. lamarcki (25 km

2
), while the largest 

was of M. balthica (3000 km
2
).  

The highest biological value was assigned to the community of 

red algae F. lumbricalis (12 points), scoring maximum points in all 

three components of valuation. High biological value was estimated 

for the communities of bivalve molluscs C. lamarcki (8 points), 

Macoma balthica (8 points), M. trossulus/B. improvisus (8 points) and 

M. arenaria (7 points), also 8 points were assigned for the community 

of amphipods B. pilosa and polychaete M. neglecta (8 points). The 

lowest values (4-6 points) were scored for the communities of 

polychaetes H. diversicolor, P. elegans, B. sarsi and Pontoporeiids 

(Monoporeia affinis and Pontoporeia femorata). 
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Table 17. Biological values of communities (3-12 points) based on three components (1-4 points): species 

richness, species biological values and habitat size. Community values are divided into four states (from poor to 

optimal) depending on number of species and biomass in the research site. Non-italic figures indicate the range 

of number of species and biomass representing the condition of the community, italic figures – biological 

values. 

 

 Max Species, ind. m-2 Biomass, g m-2 

Community value Optimal Good Fair Poor Optimal Good Fair Poor 

F. lumbricalis 
12 

> 14 10-13 5-9 < 4 > 4500 3000-4500 1500-3000 < 1500 

 

12 9 6 3 12 9 6 3 

C. lamarcki 
8 

> 9 6-8 3-5 < 2 > 45 30-45 15-30 < 15 

 

8 6 4 2 8 6 4 2 

M. balthica 
8 

> 11 8-10 4-7 < 3 > 225 150-225 75-150 < 75 

 
8 6 4 2 8 6 4 2 

M. trossulus/ 

B. improvisus 
8 

> 11 8-10 4-7 < 3 > 6000 3000-6000 1500-3000 < 1500 

8 6 4 2 8 6 4 2 

M. neglecta/ 

B. pilosa 
7 

> 7 5-6 3-4 < 2 > 65 45-65 22-45 < 22 

7 5.25 3.5 1. 75 7 5.25 3.5 1.75 

M. arenaria 
7 

> 8 6-7 3-5 < 2 > 150 100-150 50-100 < 50 

 
7 5.25 3.5 1.75 7 5.25 3.5 1.75 

H. diversicolor 
6 

> 6 4-5 2-3 1 > 13 9-13 4.5-9 < 4.5 

 

6 4.5 3 1.5 6 4.5 3 1.5 

P. elegans 
6 

> 5 3-4 2 1 > 0.75 0.5-0.75 0.25-0.5 < 0.25 

 

6 4.5 3 1.5 6 4.5 3 1.5 

Pontoporeiids 
5 

> 4 3 2 1 > 1.5 1-1.5 0.5-1 < 0.5 

 
5 3.75 2.5 1.25 5 3.75 2.5 1.25 

B. sarsi 
4 

3 2 1 0 > 0.2 0.15-0.2 0.07-0.15 < 0.07 

 

4 3 2 1 4 3 2 1 

6
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4.3.2 Biological valorisation model of the Lithuanian economic 

zone 

Validation results of biological valorisation model showed that 

the predictions were accurate. Mean absolute deviation was 1.07 

points what could be expressed as 8.9 % considering that the range of 

score points was 12. The correlation between observed and predicted 

values was strong and significant (r = 0.73, p < 0.001). 

The most important environmental predictors for the model of 

biological valorisation were the Secchi depth, sediments, wave 

generated orbital velocity and near-bottom oxygen concentration 

(Table 18). Less important was near-bottom current velocity while 

slope and curvature were not important at all.  

 
Table 18. Mean decrease accuracy (%IncMSE) of environmental predictors. 

Higher values indicate greater importance of the particular predictor. 

Environmental predictors %IncMSE 

Secchi depth 25.46 

Sediments 24.02 

Orbital velocity 23.01 

Near-bottom oxygen concentration 22.59 

Near-bottom current velocity 15.98 

Slope -2.80 

Curvature -3.43 

 

The map of biological valuation reveals that the highest 

biological value was estimated for the northern coastal area where 

stony bottoms vegetated by F. lumbricalis are present (Figure 19). 

High value soft bottom areas are situated at 10-35 m depths, where 

rich communities of bivalves M. balthica, M. arenaria and 

C. lamarcki are present. The lowest values are associated to sub-

halocline areas with poor communities of M. balthica, Pontoporeiids 

and B. sarsi. 
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Figure 19. The results of the biological valuation of the Lithuanian marine area. Black color indicates highest 

values, white color – lowest values. 
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4.4 Predictive mapping of benthic invasive species 

Dreissena polymorpha in the lake Drūkšiai based on 

video survey data 

 

Analysis of the video samples has shown that within the studied 

area the zebra mussel coverage varied from 0 up to 100 %. There were 

sites with single mussels, mussel clumps and clusters of clumps mixed 

with empty shells captured on the video (Figure 20). However, in 

most cases, live mussels were well identifiable, providing rather good 

quality of the coverage assessments. Their presence ( > 0% of the 

coverage) was registered in more than 50% of the analyzed video 

samples. 

 

 
Figure 20. clusters of clumps mixed with empty shells (left) and separate 

mussel clumps (right) capture in the video futage. 

 

The results of the validation have shown that the model of zebra 

mussel coverage was accurate. Correlation between observed and 

predicted values were very strong (r = 0.87, p < 0.001) and mean 

absolute deviation was 10.4, meaning that the average error of the 

predictions was around 10 % (comparable with video sample 

assesment accuracy). To avoid overestimations, predictions less than 

10 % of coverage were marked as unlikely and excluded them from 

further analysis. 
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According to the modelling results, the area where 

D. polymorpha was present covered about 10.6 square kilometers and 

comprised about 24% of the total lake bottom area (Fig. 4). The 

highest coverage was modelled at 5-6 meter depths in the more 

exposed areas. Deeper than 6 meters the coverage drops significantly, 

and deeper than 9-10 meters D. polymorpha was no longer present. 

These findings were consistent with the results of the video analysis 

and earlier underwater SCUBA surveys. 

 

 
Figure 21. Modelled coverage of Dreissena polymorpha in the lake Drūkšiai. 

 

There was a strong correlation (r = 0.74, p < 0.001) between 

predicted coverage and the sampled biomass of zebra mussel (Figure 

22). There was also a strong correlation (r = 0.79, p < 0.001) between 
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predicted coverage and the sampled abundance of zebra mussel 

(Figure 23). 

 

 
Figure 22. Relationship between modelled coverage and sampled biomass of 

Dreissena polymorpha. 

 

 
Figure 23. Relationship between modelled coverage and sampled abundance 

of Dreissena polymorpha. 
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Based on the linear regression equation (           
      ) the biomass in the whole lake was estimated (Figure 24). 

 

 
Figure 24. The biomass of Dreissena polymorpha in the lake Drūkšiai based 

on the linear regression model between predicted coverage and sampled 

biomass. 

 

According to relationships between the modelled coverage of 

D. polymorpha and its sampled abundance and biomass, the total 

abundance and biomass of zebra mussel in the lake was estimted. In 

total, over 60 billion of individuals weighting more than 45 thousand 

tons was present in the area. 

The highest densities of zebra mussel was estimated in the 

north-eastern part of the lake where bottom habitats are highly 

exposed to waves (Figure 25). 
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Figure 25. The modelled coverage of Dreissena polymorpha and the wave 

exposure to benthic habitats (areas with no stripes are of low exposure). 

 

The mean coverage of D. polymorpha was the highest in highly 

exposed (41.1±14.3) and moderately exposed (32.7±17.1) habitats at 

3-7 m depths (Figure 26, Table 19).  

 
Table 19. Results of two-way ANOVA: dependent variable – modelled 

coverage of D. polymorpha, factors – depth (<3 m, 3-7 m, 7-10 m) and 

exposure (low, moderate, high). 

Sources of variation d.f. 

Mean 

square F-ratio P-value 

Depth 2 318495.0 3529.03 <0.001 

Exposure 2 126430.0 1400.89 <0.001 

Depth x Exposure 4 41603.6 460.98 <0.001 

Residual 11645 90.2 
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The lowest impact of zebra mussel was estimated for the deep 

sheltered (5.8±4.7) and moderately exposed (7.9±7.4) habitats. There 

was a significant increase in coverage going from sheltered to exposed 

habitats at the depths of 3-10 m, while the most exposed shallow 

habitats were significantly less impacted than moderately exposed and 

did not differ from low exposed areas (respectively 14.0±9.7, 

22.2±11.3, 12.7±6.9).  

 

 

Figure 26. The mean cover of D. polymorpha at different depths within low, 

moderate and high wave exposure on bottom sediments. Homogeneity of 

groups was tested with Tukey’s HSD test (N= 11 654, Mean ± 0.95 Conf. 

intervals). 
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5 DISCUSION 

5.1 The use of species distribution models in benthic 

ecology and their limitations  

All predictive modelling techniques, in general, provided useful 

models, while the machine learning RF method achieved the best 

predictive performance on both, occurrence and biomass data. This is 

in accordance with other recent studies (Gislason et al., 2006; Cutler et 

al., 2007; Collin et al., 2011). 

Nevertheless, the predictive performance of models by GAM, 

MARS and MaxEnt was close to RF. Performance of RF occurrence 

models was relatively “good” (AUC > 0.8) for the most of the species, 

while other modelling methods, especially MaxEnt, were “good” only 

for few species. The MaxEnt case can be explained by a very strong 

negative correlation between AUC and prevalence, indicating that 

MaxEnt was relatively inaccurate for the widespread species (AUC = 

0.56-0.61, prevalence ≥ 0.68), such as bivalve M. balthica and 

polychaete worms: M. neglecta, H. diversicolor and P. elegans (Table 

7 and Table 9). On the other hand, predictive performance of MaxEnt 

and other methods was relatively good for less dispersed species 

(AUC = 0.90-0.93, prevalence ≤ 0.14), such as coastal hard-bottom 

associated F. sabella, I. balthica and T. fluviatilis.  

In biomass models RF was superior over GAM and MARS 

according to the coefficient of determination in most of the cases and 

explained up to 40 % of variance more than others. This was most 

notable in M. arenaria and B. pilosa models, where the coefficients of 

determination of GAM and MARS were < 10 %, while RF achieved > 

40 %.  

As it was stressed in several studies (Araujo and New, 2007; 

Grenouillet et al., 2011; Bučas et al., 2013), even if the performance of 

different methods (measured as AUC, r
2
, NRMSE or other metrics) is 

comparable, the predictions produced by these models will inevitably 

be somewhat different and there is no way to identify the best method. 



77 

 

Thus it is recommended to apply more than a single modelling method 

(ensemble approach). 

This study showed that the data splitting into train and test 

datasets can play a significant role on the performance of models. 

Depending on the random split the models achieved from “poor” 

(AUC < 0.7) to “perfect” (AUC > 0.9) performance. In this respect the 

most sensitive method was MARS for both, occurrence and biomass 

distribution models. For example, on the average of 100 iterations, the 

models of M. balthica achieved “good” prediction performance, but 

iterations ranged from nearly coin-flip accurate to perfect (AUC = 

0.56-0.94). The most consistent method was again RF in respect of 

AUC and R
2
. On the other hand, data traits, such as number of 

samples, sampling density, response type, number of predictors 

included in the model, data response prevalence (for occurrence 

models) and variance in the response (for abundance models) can also 

significantly affect the performance of modelling methods (Manel et 

al., 2001; Hernandez et al., 2006; McPherson and Jetz, 2007; Li and 

Heap, 2008; Bean et al., 2011; Bučas et al., 2013).  

Although MaxEnt showed the worst overall results in 

comparison to other SDMs, it can be very useful for the modelling of 

species which are not well sampled with the Van-Veen grab sampler, 

since MaxEnt can manage only with presence data (Elith et al., 2011). 

If the density of species individuals is less than one individual per 

square meter or more, then even several replicates of grab samples 

(sampled area 0.1 m
2
) can easily miss the species and falsely provide 

absence information for the model. MaxEnt in this particular case 

would ignore possible false absence data and build a model only on 

presence data which is always true. Thus apart from less disperse 

species mentioned above, MaxEnt could be the most effective 

modelling tool for species such as S. entomon and nectobenthos such 

as mysids and shrimps. 

In this study the same set of predictors was used for all the 

species to be more consistent when comparing different modelling 

techniques. However, as these species are associated with different 

environments, some of them were modelled less accurately most 
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likely because of the limitations of the used parameters. For instance, 

a model performance of small isopods I. balthica would increase 

significantly should the data on the macroalgae, to which they are 

associated (Vetter et al., 1999) were available and included in the 

model. Similarly, the data on the total organic content is very 

important for benthic species distribution modelling (Gogina and 

Zettler, 2010), especially for predictions of deposit feeders such as 

polychaetes H. diversicolor, M. neglecta and P. elegans (Olenin, 

1997).  

On the other hand, uneven distribution of sampling sites can 

result in different spatial accuracy, thus in the case of LMA more 

dense sampling in deeper areas should provide better models for 

widespread and deep living species. Nevertheless, both occurrence 

and biomass distribution models of several species were relatively 

good (i.e. M. balthica, M. trossulus) and can provide reliable spatial 

maps for further ecological studies or marine spatial planning and 

management. 

5.2 Valuating the quality of benthic habitats: the added 

value of predictive modelling  

The main advantage of the predictive modelling is the 

possibility to acquire spatial information from point based data with 

statistical background. Spatial information can be moulded into maps 

which can further provide basis for biological valuation maps 

(BVMs), crucially needed for the management for sustainable use and 

conservation of the sea (Derous et al., 2007). 

The proposed method for the mapping of benthic habitat quality 

in terms of the fish feeding ground provision are one of the examples 

of species distribution modelling and the creation of BVMs. Such 

maps provide a different view of the spatial distribution of valuable 

seabed areas as they do not necessarily coincide with the high catch 

areas of selected fish species.  

It is known that it can take more than 30 hours for prey to be 

digested (Macdonald et al., 1982), depending on the size of both 
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predator and prey (Santos and Jobling, 1991; Bromley, 1994) as well 

as on water temperature (Tyler, 1970). Furthermore, the sustained 

speed of cod can reach 0.6-0.9 BL s
-1

 (He, 1991; Björnsson, 1993), 

meaning that 60 cm cod can swim for 38-58 km before their prey are 

digested. This shows that high catch areas of mobile fish whose 

stomachs are filled with benthic invertebrates do not necessary 

correspond to the good quality of the seabed, for there is no proof that 

the fish were caught in an actual feeding ground. Certainly, this is not 

the case with low mobility species like flounder and eelpout.  

On the other hand, these maps do not evaluate the suitability of 

a given environment for fish species apart from the biomass 

distribution of prey items and their importance to the diet. It may 

happen that a prey biomass is very high but the fish has limited access 

to this environment or the environment may be unsuitable in the 

context of factors other than feeding. For instance, the eelpout is 

exclusively associated with coastal hard bottoms, so other areas (even 

of the highest quality) are irrelevant to this species. Nevertheless, if 

the quality map of feeding grounds were combined with fish 

distribution maps, it would elevate our knowledge to a different level.  

As in many other modelling approaches the outcome of our 

method is dependent on the quality of the initial data. The type of data 

for the service user module can be selected according to the aim of a 

study (in our case relatively robust data were sufficient) and could 

range from several categories of importance based on expert 

knowledge to exact figures of prey numbers and their weight. For the 

service provider module of the best available data on both 

macrozoobenthos and predictors it would be advisable, for instance, to 

add other environmental parameters such as organic content and 

nutrient supply, which could obviously enhance the quality and 

applicability of models (Gogina and Zettler, 2010). Furthermore, 

accuracy assessments have stressed that the different quartiles of a 

predictor range may be unevenly justified by macrofauna data, so the 

sampling strategy should take into account the spatial peculiarities of 

important predictors, especially that part of a range where significant 

changes in the characteristics of macrofauna occur.  
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It is important that the method may have many other 

applications. The data in the user module (in this case the feeding of 

cod, flounder and eelpout) could be easily replaced by different 

objects like the feeding of other fish species or even birds. On the 

other hand, it could serve not only to map feeding grounds, but also 

other types of services or assessments, for instance, habitat sensitivity, 

implemented by Hiscock and Tyler-Walters (2006). Finally, if 

biomass data were replaced with abundance of macrozoobenthos in 

the provider module, the method could be used, e.g. to assess seabed 

quality according to the Benthic Quality Index introduced by 

Rosenberg et al. (2004). 

The application of biological valorisation methodology provides 

benthic habitat quality maps from a different perspective. The 

approach is based on the assessment of individual species and 

habitat/species assemblages and considers the value of an area in 

terms of its resilience and the stability of species and species 

assemblages, and not from the anthropocentric (goods and services) 

point of view (Węsławski et al., 2009). 

Based on the application of biological valorisation approach the 

most valuable areas of LMA are a northern coastal areas where stony 

bottoms vegetated by macrophytes are present (Olenin et al., 1996; 

Olenin, Daunys, 2004; Bučas et al., 2009). As illustrated in Figure 27, 

the highest values of biological valorisation well correspond with the 

modelled coverage of the red algae F. lumbricalis. So it is fair to state, 

that the community of the habitat engineer red algae both in terms of 

species richness and the biological value of species is the most 

valuable in LMA.  
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Figure 27. Biological valorisation of the northern coast of Lithuanian Baltic 

Sea (left) and the modelled coverage of red algae Furcellaria lumbricalis 

(right) by Bučas et al., 2009. 

 

It is fair to notice, that both assessments (quality of fish feeding 

grounds and biological valorisation) slightly underestimate hard 
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substrate areas in the offshore of LMA, since no field sampling was 

preformed due to the restrictions for SCUBA diving. This suggests 

that the integration of remote methods is needed to cover areas 

inaccessible for divers or grab sampling.  

Application of species distribution models in mapping 

bioinvasions is another example of benefits from the predictive 

modelling. It is well known that invasive engineers in aquatic 

ecosystems are of a particular scientific and managerial concern, since 

many of them are extremely successful, become very abundant in a 

short time and have multiple effects on the ecosystem (Dame, 1993, 

1996; Karatayev et al., 2002; Burlakova et al., 2012; Zaiko et al., 

2013).  

In the case of D. polymorpha in the lake Drūkšiai, over more 

than 30 years since the invasion, zebra mussel drastically shifted 

benthic communities in the ecosystem. According to this study, in 

total, over 60 billion of individuals weighting more than 45 thousand 

tons was present in the area during 2008-2010. These estimations are 

significantly higher than in previous studies. In 1985 the estimated 

biomass of zebra mussels in the lake was approximately 1300 tons and 

in 1989 it reached 5600 tons (Grigelis, 1993). However, it is hard to 

state if these differences are determined by different methodologies or 

by time gap separating studies.  

As presented in Zaiko et al. (2013), there is a significant linear 

relationship between the biomass of D. polymorpha and the 

abundance of other benthic invertebrates (Figure 28). Furthermore, 

many species were found only in presence of zebra mussels (e.g. most 

of the gastropods, leeches, crustaceans, and insects), and abundances 

of those present also in the bare sediments were remarkably lower on 

average. 

 



83 

 

 
Figure 28. The relationship between the biomass of zebra mussel and the 

abundance of other benthic invertebrates in the lake Drūkšiai (after Zaiko et 

al., 2013). 

 

A massive expansion of the zebra mussel in the shallow areas of 

the lake significantly altered benthic habitats. Relatively flat soft 

bottom habitats are shifted by mussel clumps and shell deposits that 

form 3 dimensional reef-like structures. These peculiar structures 

elevate the abundance of both epifaunal and infaunal invertebrates by 

providing substrate, shelter and food or even enhance the aeration of 

sediments by promoting microcirculation flows (Zaiko et al., 2009). 

On the other hand, it is know that the zebra mussel can drastically 

decrease the population size of the local unionid species (Schloesser 

and Nalepa, 1994; Ricciardi et al., 1996). Similarly, the decrease in 

abundance of unionids was observed in the lake Drūkšiai few years 

later after the occurrence of D. polymorpha (Grigelis, 1993), 

nevertheless unionids are still present in recent times (Baršienė and 

Rybakovas, 2008), however no information of its distribution in 

spatial scale is available. 
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To ensure the robustness of the modelling results of the 

distribution of D. polymorpha in the lake Drūkšiai, ground-truthing in 

some particular areas is recommended for the future studies. In this 

study the Belorussian part of the lake was not sampled, where high 

densities of mussels were modelled. Also there were a number of not-

sampled shallows in the central part of the lake, identified by the 

model as zebra mussel beds. These results should be verified by 

additional surveys.  

Bioinvasion assessments, such as biopollution assessment 

(Olenin et al., 2007) in the scale of whole ecosystem require spatial 

information on the distribution of the invader. Relying only on grab or 

SCUBA diver sampling, that would require very intensive and costly 

sampling, since the area of the lake is about 49 km
2
 and the coastline 

of more than 70 km. In these circumstances predictive modelling 

provides many advantages, especially if the model can be constructed 

on remote video survey data. Furthermore, the same approach could 

be applied for the hard substrate offshore habitats in LMA for the 

assessment of blue mussel beds. 

5.3 Future perspectives 

The increase of spatial data on environmental parameters with 

the development of remote sensing equipment and advanced 

modelling of abiotic factors in recent years has opened new 

opportunities for benthologists.  

For areas covered by multibeam and side-scan sonars a high 

resolution data on many environmental characteristics can be 

extracted, for instance, depth, sediment types, roughness and slope of 

the seabed and others (Gulbinskas et al., 2009; Lamarche et al., 2011). 

Large Baltic scale projects such as BALANCE provide open source 

results for other important parameters (i.e. near-bottom oxygen 

concentration, current velocity) shaping the distribution on benthic 

species. Another important factor – wind induced exposure to the 

bottom sediments can be generated by wave exposure models such 

WEMo (Malhotra and Fonseca, 2007) based only on the depth and 
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average wind velocities. All this spatial information is essential for the 

predictions of the distribution of benthic macrofauna or other 

organisms and it is getting more and more accessible for scientists.  

Finally, the integration of species distribution modelling 

methods (such as random forests, DOMAIN, MaxEnt) into geographic 

information systems (element distribution modelling tool in ArcGIS 

software) and especially to open source software like R, Quantum 

GIS, openModeller and others (Ghisla et al., 2012) probably indicates 

that it is only a matter of time before empirical modelling will become 

a casual spatial analysis for ecologists.  
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CONCLUSIONS 

1) Among the empirical models compared, the RF method showed 

the best results in predicting the occurrence and biomass 

distribution of benthic invertebrates. Predictive performance of 

GAMs and MARS followed RF, whereas MaxEnt accurately 

predicted occurrence only for the species with relatively low 

distribution range. 

 

2) The proposed system, integrating empirical modelling of 

macrozoobenthos distribution and fish diet composition, allows 

mapping the benthic habitat quality in terms of provision of 

food for fishes. The highest quality feeding grounds for cod, 

flounder and eelpout are determined in the coastal stony bottom 

area, the soft bottom habitats in the central and mixed substrates 

in the western parts of the LMA. The total estimated area of 

these habitats comprises 7.6 % of the LMA. 

 

3) The most valuable habitat within the Lithuanian marine area 

according to the biological valorisation approach based on 

biological values of species, species richness and the spatial 

extent of a habitat is the coastal stony bottom vegetated by red 

algae Furcellaria lumbricalis. 

 

4) The empirical modelling based on video survey data can be 

used for the assessment of the distribution range of the invasive 

bivalve Dreissena polymorpha. It was estimated that the 

invasion caused benthic habitat quality alteration in ca. 24 % of 

the lake Drūkšiai (10.6 km
2
). The most altered habitats (with 

the coverage of zebra mussel being 41.1 ± 14.3 %) are located 

in the highly exposed areas within the depth range of 3-7 m. 
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Appendix 1. Prediction map of Balanus improvisus occurrence probability and biomass distribution modelled 

random forests (RF) modelling technique. 
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Appendix 2. Prediction map of Halicryptus spinulosus occurrence probability and biomass distribution 

modelled random forests (RF) modelling technique. 
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Appendix 3. Prediction map of Hediste diversicolor occurrence probability and biomass distribution modelled 

random forests (RF) modelling technique. 
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Appendix 4. Prediction map of Bathyporeia pilosa occurrence probability and biomass distribution modelled 

random forests (RF) modelling technique. 
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Appendix 5. Prediction map of Cerastoderma lamarcki occurrence probability and biomass distribution 

modelled random forests (RF) modelling technique. 
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Appendix 6. Prediction map of Gammarus spp. occurrence probability and biomass distribution modelled 

random forests (RF) modelling technique. 
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Appendix 7. Prediction map of Mya arenaria occurrence probability and biomass distribution modelled random 

forests (RF) modelling technique. 
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Appendix 8. Prediction map of Macoma balthica occurrence probability and biomass distribution modelled 

random forests (RF) modelling technique. 
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Appendix 9. Prediction map of Marenzelleria neglecta occurrence probability and biomass distribution 

modelled random forests (RF) modelling technique. 
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Appendix 10. Prediction map of Mytilus trossulus occurrence probability and biomass distribution modelled 

random forests (RF) modelling technique. 
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Appendix 11. Prediction map of Pontoporeiids occurrence probability and biomass distribution modelled 

random forests (RF) modelling technique. 
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Appendix 12. Prediction map of Saduria entomon occurrence probability and biomass distribution modelled 

random forests (RF) modelling technique. 
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Appendix 13. Prediction map of Corophium spp. occurrence probability and biomass distribution modelled 

random forests (RF) modelling technique. 
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Appendix 14. Prediction map of Bylgides sarsi occurrence probability and biomass distribution modelled 

random forests (RF) modelling technique. 
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Appendix 15. Prediction map of Fabricia sabella occurrence probability and biomass distribution modelled 

random forests (RF) modelling technique. 
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Appendix 16. Prediction map of Hydrobia sp. occurrence probability and biomass distribution modelled 

random forests (RF) modelling technique. 
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Appendix 17. Prediction map of Idotea balthica occurrence probability and biomass distribution modelled 

random forests (RF) modelling technique. 
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Appendix 18. Prediction map of Jaera albifrons occurrence probability and biomass distribution modelled 

random forests (RF) modelling technique. 
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Appendix 19. Prediction map of Oligochaeta undet. occurrence probability and biomass distribution modelled 

random forests (RF) modelling technique. 
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Appendix 20. Prediction map of Ostracoda undet. occurrence probability and biomass distribution modelled 

random forests (RF) modelling technique. 
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Appendix 21. Prediction map of Pygospio elegans occurrence probability and biomass distribution modelled 

random forests (RF) modelling technique. 
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Appendix 22. Prediction map of Streblospio shrubsolii occurrence probability and biomass distribution 

modelled random forests (RF) modelling technique. 
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Appendix 23. Prediction map of Theodoxus fluviatilis occurrence probability and biomass distribution modelled 

random forests (RF) modelling technique. 
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